-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathk0_separation_timsTOF_parallel.py
754 lines (648 loc) · 35.8 KB
/
k0_separation_timsTOF_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
# nohup python -u k0_separation_timsTOF_parallel.py [recordpath] [sample_name] [segment] [scanpath] > output.log &
''' nohup python -u k0_separation_timsTOF_parallel.py '/data/anne/timsTOF/hash_records/' 'A1_1_2042' 1 /data/anne/timsTOF/scanned_result/ > output.log & '''
from __future__ import division
from __future__ import print_function
from time import time
import pickle
import numpy as np
from collections import deque
from collections import defaultdict
import copy
#import scipy.misc
#import scipy.stats as stats
import sys
#from sklearn import metrics
import bisect
#import gc
import gzip
from operator import itemgetter
recordpath=sys.argv[1]
sample_name=sys.argv[2]
gpu_index=sys.argv[3]
segment=sys.argv[4]
scanpath=sys.argv[5]
isotope_gap=np.zeros((10))
isotope_gap[0]=0.00001
isotope_gap[1]=1.00000
isotope_gap[2]=0.50000
isotope_gap[3]=0.33333
isotope_gap[4]=0.25000
isotope_gap[5]=0.20000
isotope_gap[6]=0.16667
isotope_gap[7]=0.14286
isotope_gap[8]=0.12500
isotope_gap[9]=0.11111
target_part=int(segment) #8 #
max_part=12
min_part=1
RT_window=10
mz_resolution=5 #
k0_resolution=5
total_class=10
RT_unit=0.01
mz_unit=0.00001
num_class=10
new_mz_resolution=3
new_mz_unit=0.001
print('trying to load ms1 record')
######################################################################
f=open(recordpath+'pointCloud_'+sample_name+'_maxI_k0', 'rb')
maxI=pickle.load(f)
f.close()
f=gzip.open(recordpath+'pointCloud_'+sample_name+'_k0_dict', 'rb')
k0_dict=pickle.load(f)
f.close()
k0_list=sorted(k0_dict.keys())
k0_index_array=dict()
for i in range (0, len(k0_list)):
k0_index_array[k0_list[i]]=i
part=target_part
f=gzip.open(scanpath+sample_name+'_timsTOF_list_dict_RT_'+str(part), 'rb') #v3r2
list_dict_RT, part_dict=pickle.load(f)
f.close()
max_RT=[]
min_RT=[]
max_RT.append(-1)
min_RT.append(100)
for z in range (1, num_class):
RT_list=sorted(list_dict_RT[z].keys())
if len(RT_list)>0:
max_RT.append(RT_list[len(RT_list)-1])
min_RT.append(RT_list[0])
else:
max_RT.append(-1)
min_RT.append(100)
for i in range (1, 4):
if part+i<=max_part:
f=gzip.open(scanpath+sample_name+'_timsTOF_list_dict_RT_'+str(part+i), 'rb') #v3r2
list_dict_next, part_dict=pickle.load(f)
f.close()
for z in range (1, 10):
RT_list=sorted(list_dict_next[z].keys(), reverse=False)
for rt_idx in range (0, len(RT_list)): #min(, RT_window*2)):
print('rt indx %d'%rt_idx)
rt=np.float32(RT_list[rt_idx])
if rt in list_dict_RT[z]:
for mz in list_dict_next[z][rt].keys():
list_dict_RT[z][rt][mz].extend(list_dict_next[z][rt][mz])
elif len(list_dict_next[z][rt].keys())>0:
list_dict_RT[z][rt]=defaultdict(list)
for mz in list_dict_next[z][rt].keys():
list_dict_RT[z][rt][mz].extend(list_dict_next[z][rt][mz])
else:
break
print('data restore done')
RT_list=[]
RT_index_array=[]
sorted_mz_list=[]
RT_index_array.append(-1)
sorted_mz_list.append(-1)
RT_list.append(-1)
for z in range (1, num_class):
RT_list.append([])
RT_list[z]=sorted(list_dict_RT[z].keys())
RT_index_array.append(dict())
sorted_mz_list.append([])
sorted_mz_list[z]=[]
for i in range (0, len(RT_list[z])):
RT_value=np.float32(RT_list[z][i])
RT_index_array[z][RT_value]=i
sorted_mz_list[z].append([])
sorted_mz_list[z][i]=sorted(list_dict_RT[z][RT_value].keys())
start_time=time()
f=gzip.open(scanpath+sample_name+'_featureTable_v2_timsTOF','rb')
feature_table=pickle.load(f)
f.close()
isotope_cluster=defaultdict(list)
mz_list=feature_table.keys()
total_feature=0
for mz in mz_list:
ftr_list=feature_table[mz]
for ftr in ftr_list:
# if both points are greater than min point + starting is less than max point0
if (ftr[0][1][1] >= min(min_RT) and ftr[0][1][1] <= max(max_RT)) and (ftr[0][1][2] >= min(min_RT) and ftr[0][1][2] <= max(max_RT)):
long_mz=ftr[0][1][5]
isotope_cluster[round(long_mz, mz_resolution)].append(ftr)
total_feature=total_feature+1
feature_table=isotope_cluster
print('%d'%total_feature)
ppm=10
k0_tolerance=0.01 #
A=5 # #increasing A will deduct matching with smaller k0 tolerance
E=1 #gap (along k0 axis) between starting and ending of two features
k0_skip_tolerance=0.01
total_feature=0
not_found=0
total_feature_input=0
########## pick each feature and make a list_dict
mz_list_ftr=sorted(feature_table.keys())
new_feature_table=defaultdict(list)
for mz_key_indx in range (0, len(mz_list_ftr)):
mz_key=mz_list_ftr[mz_key_indx]
ftr_list=feature_table[mz_key] #monoisotope
for f in range (0, len(ftr_list)):
total_feature_input=total_feature_input+1
ftr=ftr_list[f]
min_RT=1000
max_RT=-1
for iso_index in range (0, 1): #len(ftr)-1):
if ftr[iso_index][1][1]<min_RT:
min_RT=ftr[iso_index][1][1]
if ftr[iso_index][1][2]>max_RT:
max_RT=ftr[iso_index][1][2]
min_RT=np.float32(min_RT)
max_RT=np.float32(max_RT)
if max_RT-min_RT>2:
continue
mz_tolerance=round((ftr[0][0]*ppm)/10**6, new_mz_resolution)
min_mz=round(ftr[0][0]-mz_tolerance, new_mz_resolution) # resolution 3
z=int(ftr[len(ftr)-1][0])
max_mz=round(ftr[len(ftr)-2][0]+mz_tolerance, new_mz_resolution) #round(max(min_mz+isotope_gap[z]+mz_tolerance, ftr[len(ftr)-2][0]+mz_tolerance), new_mz_resolution)
##################################################
# a ftr with min_mz,max_mz,minRT,maxRT is found
# make a list_dict of, key=mz, value=1/k0, starting from minRT to max RT
cluster_for_rt=[]
RT_s=RT_index_array[z][min_RT]
RT_e=RT_index_array[z][max_RT]
# i=-1
for RT_idx in range (RT_s, RT_e+1):
# i=i+1
list_dict=dict()
mz_list=sorted_mz_list[z][RT_idx] #sorted(list_dict_RT[z][RT_list[z][RT_idx]].keys())
find_mz_idx_start= bisect.bisect_left(mz_list, min_mz)
if len(mz_list)==find_mz_idx_start or round(mz_list[find_mz_idx_start], mz_resolution)>max_mz:
continue
mz_value_long=mz_list[find_mz_idx_start]
# print(mz_value_long)
while mz_value_long<=max_mz and find_mz_idx_start<len(mz_list):
mz_value=np.round(mz_value_long, new_mz_resolution)
# as long as they all produce the same mz_value, insert them into the same k0_list
k0_list=deque()
while np.round(mz_value_long, new_mz_resolution)==mz_value:
# print(mz_value)
# k0_list.append(list_dict_RT[RT_list[RT_idx]][mz_value_long])
temp_list=sorted(list_dict_RT[z][RT_list[z][RT_idx]][mz_value_long])
for k in range (0, len(temp_list)): #[k0,intensity]
real_intensity=(temp_list[k][1]/255)*maxI
k0_list.append([temp_list[k][0], real_intensity])
find_mz_idx_start=find_mz_idx_start+1
if find_mz_idx_start<len(mz_list):
mz_value_long=mz_list[find_mz_idx_start]
else:
break
# merge intesity of those duplicates
k0_list=sorted(k0_list)
temp_list=[]
j=0
intensity_sum=k0_list[j][1]
j=1
while j < len(k0_list):
if k0_list[j][0]==k0_list[j-1][0]:
intesity_sum=intensity_sum+k0_list[j][1]
else:
temp_list.append([k0_list[j-1][0], intensity_sum])
intensity_sum=k0_list[j][1]
j=j+1
temp_list.append([k0_list[j-1][0], intensity_sum])
k0_list=temp_list
# add continuas k0 values in to the queue separated by -1
list_dict[mz_value] = deque()
pred_start=k0_list[0][0]
pred_k0=k0_list[0][0]
current_intensity=k0_list[0][1]
# list_dict[i][mz_value].append(k0_list[0])
for j in range (1, len(k0_list)):
# if np.abs(round(k0_list[j][0], k0_resolution)-round(pred_k0, k0_resolution))<=k0_resolution:
if np.abs(k0_index_array[np.float32(round(k0_list[j][0], k0_resolution))]-k0_index_array[np.float32(round(pred_k0, k0_resolution))])<=A: #A: continuation
pred_k0=k0_list[j][0]
current_intensity=current_intensity+k0_list[j][1]
else: # when they are far apart
# if pred_start!=pred_k0:
list_dict[mz_value].append([[pred_start, pred_k0], current_intensity, -1])
# else:
# list_dict[mz_value].append([[pred_start], current_intensity, -1])
pred_start=k0_list[j][0]
pred_k0=k0_list[j][0]
current_intensity=k0_list[j][1]
# if pred_start!=pred_k0:
list_dict[mz_value].append([[pred_start, pred_k0], current_intensity, -1])
# else:
#list_dict[mz_value].append([[pred_start], current_intensity, -1])
##################
# now you have list_dict in desired format: for each mz, [k0_start,k0_end,intesity]
# now make a cluster list for this RT
## and run following script ############
isotope_cluster=defaultdict(deque)
merge_isotopes=dict() #based on id
list_keys=sorted(list_dict.keys())
# if len(list_keys)==1:
# list_dict.pop(round(list_keys[0], new_mz_resolution))
#
# list_keys=sorted(list_dict.keys())
max_dict=len(list_keys)-1
i=0
j=0
k=0
for i in range (0, max_dict):
# print(i)
mz_pred=round(list_keys[i], new_mz_resolution)
mz=round(list_keys[i+1], new_mz_resolution)
dynamic_mz_unit=round((mz_pred*ppm)/10**6, new_mz_resolution) # mz_pred is 700.1204, mz is 700.1274 or less than that, then fine to merge them
if mz<=round(mz_pred+dynamic_mz_unit, new_mz_resolution):
mz_pred_RT_list=list_dict[mz_pred]
mz_RT_list=list_dict[mz]
k=0
for j in range (0, len(mz_pred_RT_list)):
a=round(min(mz_pred_RT_list[j][0]), k0_resolution) #actual floating point RT value
b=round(max(mz_pred_RT_list[j][0]), k0_resolution) #actual floating point RT value
id=mz_pred_RT_list[j][2]
#mz_pred is the actual floating point mz value
mz_point1= mz_pred
y=mz_pred_RT_list[j][1]
weight_pred_mz=round(y, 2)
#find the next overlapped
p=k
max_overlapped_area=-1
max_overlapped_index=-1
while p < len(mz_RT_list):
c=round(min(mz_RT_list[p][0]), k0_resolution)
d=round(max(mz_RT_list[p][0]), k0_resolution)
#check overlapping: if (RectA.Left < RectB.Right && RectA.Right > RectB.Left..)
if np.abs(c-b)>k0_tolerance:
break
elif (a<=d and b>=c) or np.abs(round(((a+b)/2)-((c+d)/2), k0_resolution))<=k0_tolerance: #(np.abs(a-d)<=k0_tolerance and np.abs(b-c)<=k0_tolerance): #overlap
mz_point2= mz
# rt_2_s=RT_index_array[z][c]
# rt_2_e=RT_index_array[z][d]
y=mz_RT_list[p][1]
# C
# if abs(RT_index_array[np.float32(peak_RT_1)]-RT_index_array[np.float32(peak_RT_2)])<=2: #changed from 2
overlapped_area=min(b, d)-max(a, c)
if overlapped_area>max_overlapped_area:
max_overlapped_area=overlapped_area
max_overlapped_index=p
p=p+1
if max_overlapped_index==-1: #no match
if id==-1:
new_id=len(merge_isotopes)
mz_weight=[weight_pred_mz]
# peak_RT_list=[peak_RT_1]
merge_isotopes[new_id]=[mz_weight, a, b, -1, weight_pred_mz, [mz_pred]] #, peak_RT_list]
list_dict[mz_pred][j][2]=[]
list_dict[mz_pred][j][2].append(new_id)
# list_dict[mz_pred][j]=[0, 0, -1] #-- pop
k=p
continue
# else
c=round(min(mz_RT_list[max_overlapped_index][0]), k0_resolution)
d=round(max(mz_RT_list[max_overlapped_index][0]), k0_resolution)
mz_point2= mz
# rt_2_s=RT_index_array[z][c]
# rt_2_e=RT_index_array[z][d]
y=mz_RT_list[max_overlapped_index][1] ####START HERE ##########
# peak_RT_2=RT_list[rt_2_s]
weight_mz=y
intensity_2=weight_mz
################################
if id==-1:
intensity_1=weight_pred_mz
#########################
if intensity_1>intensity_2:
grp_rt_st=a
grp_rt_end=b
auc=intensity_1
else:
grp_rt_st=c
grp_rt_end=d
auc=intensity_2
new_id=len(merge_isotopes)
mz_weight=[weight_pred_mz, weight_mz]
# peak_RT_list=[peak_RT_1, peak_RT_2]
merge_isotopes[new_id]=[mz_weight, grp_rt_st, grp_rt_end, auc, intensity_1+intensity_2, [mz_pred, mz]] #, peak_RT_list]
if list_dict[mz][max_overlapped_index][2]==-1:
list_dict[mz][max_overlapped_index][2]=[]
list_dict[mz][max_overlapped_index][2].append(new_id)
list_dict[mz_pred][j][2]=[]
list_dict[mz_pred][j][2].append(new_id)
else: #this might need to run a loop over ids. do this for all ids
for pred_id in id:
get_current_intensity=merge_isotopes[pred_id][3]
if get_current_intensity<=intensity_2:
merge_isotopes[pred_id][1]=c
merge_isotopes[pred_id][2]=d
merge_isotopes[pred_id][3]=intensity_2
# add new intensity and weight to the existing one
merge_isotopes[pred_id][4]=merge_isotopes[pred_id][4]+intensity_2
merge_isotopes[pred_id][5].append(mz)
merge_isotopes[pred_id][0].append(weight_mz)
# merge_isotopes[pred_id][6].append(peak_RT_2)
if list_dict[mz][max_overlapped_index][2]==-1:
list_dict[mz][max_overlapped_index][2]=[]
list_dict[mz][max_overlapped_index][2].append(pred_id)
if max_overlapped_index==-1:
k=p
else:
k=max_overlapped_index
# if id==0: #for debug
# break
elif i==0 or mz_pred>round(list_keys[i-1]+dynamic_mz_unit, new_mz_resolution):
# list_dict.pop(mz_pred)
mz_pred_RT_list=list(list_dict[mz_pred])
for j in range (0, len(mz_pred_RT_list)):
a=round(min(mz_pred_RT_list[j][0]), k0_resolution) #actual floating point RT value
b=round(max(mz_pred_RT_list[j][0]), k0_resolution) #actual floating point RT value
id=mz_pred_RT_list[j][2]
#mz_pred is the actual floating point mz value
mz_point1= mz_pred
# rt_1_s=RT_index_array[z][a]
# rt_1_e=RT_index_array[z][b]
y=mz_pred_RT_list[j][1]
# peak_RT_1=RT_list[rt_1_s]
weight_pred_mz=round(y, 2)
new_id=len(merge_isotopes)
mz_weight=[weight_pred_mz]
# peak_RT_list=[peak_RT_1]
merge_isotopes[new_id]=[mz_weight, a, b, -1, weight_pred_mz, [mz_pred]] #, peak_RT_list]
list_dict[mz_pred][j][2]=[]
list_dict[mz_pred][j][2].append(new_id)
if len(list_keys)!=0:
i=i+1
if max_dict==0:
i=0
mz=round(list_keys[i], new_mz_resolution)
mz_RT_list=list(list_dict[mz])
list_dict[mz]=mz_RT_list
for j in range (0, len(mz_RT_list)):
if mz_RT_list[j][2]==-1:
a=round(min(mz_RT_list[j][0]), k0_resolution)
b=round(max(mz_RT_list[j][0]), k0_resolution)
mz_point1= mz
# rt_1_s=RT_index_array[np.float32(a)]
# rt_1_e=RT_index_array[np.float32(b)]
y=mz_RT_list[j][1]
# peak_RT_1=RT_list[rt_1_s]
weight_mz=y
new_id=len(merge_isotopes)
mz_weight=[weight_mz]
# peak_RT_list=[peak_RT_1]
merge_isotopes[new_id]=[mz_weight, a, b, -1, weight_mz, [mz]] #, peak_RT_list]
list_dict[mz][j][2]=[]
list_dict[mz][j][2].append(new_id)
# list_dict[mz][j]=[0, 0, -1]
# print('merge isotopes done')
isotope_table=defaultdict(list)
for i in range (0, len(merge_isotopes)):
if merge_isotopes[i][1]==merge_isotopes[i][2]:
continue
mz_weight_list=merge_isotopes[i][0]
max_weight=-1
mz_index=-1
for j in range(0, len(mz_weight_list)):
if mz_weight_list[j]>=max_weight:
max_weight=mz_weight_list[j]
mz_index=j
isotope_table[round(merge_isotopes[i][5][mz_index], new_mz_resolution)].append([round(merge_isotopes[i][1]+(merge_isotopes[i][2]-merge_isotopes[i][1])/2, k0_resolution), merge_isotopes[i][1],merge_isotopes[i][2],merge_isotopes[i][4],merge_isotopes[i][5]])
isotope_mz_list=sorted(isotope_table.keys())
isotope_table_temp=defaultdict(list)
for i in isotope_mz_list:
isotope_table[i]=sorted(isotope_table[i])
j=0
while (j<len(isotope_table[i])):
isotope_table_temp[i].append(isotope_table[i][j])
if j+1>=len(isotope_table[i]):
break
for k in range (j+1, len(isotope_table[i])):
if (isotope_table[i][j][0]!=isotope_table[i][k][0]):
break
j=k
isotope_table=copy.deepcopy(isotope_table_temp)
isotope_table_temp=0
DEBUG=0
mz_list=sorted(isotope_table.keys())
tolerance_RT=2 #D
# mz_tolerance=2
for mz in mz_list:
iso_list_mz=isotope_table[mz]
for i in range (0, len(iso_list_mz)):
current_iso=iso_list_mz[i]
current_mz=mz
if current_iso[0]==-1:
continue
current_peak=current_iso[0]
found1=0
id=len(isotope_cluster)
next_mz_exact=round(current_mz+isotope_gap[z], new_mz_resolution)
next_mz_range=[]
next_mz_range.append(next_mz_exact)
mz_tolerance_10ppm=round((next_mz_exact*ppm)/10**6, new_mz_resolution)
mz_left_limit=round(next_mz_exact-mz_tolerance_10ppm, new_mz_resolution)
mz_right_limit=round(next_mz_exact+mz_tolerance_10ppm, new_mz_resolution)
# mz_tolerance=int(round(mz_tolerance_10ppm/new_mz_unit, new_mz_resolution))
find_mz_idx_start= bisect.bisect_left(mz_list, mz_left_limit)
while len(mz_list)!=find_mz_idx_start and round(mz_list[find_mz_idx_start], new_mz_resolution)<=mz_right_limit:
next_mz_range.append(round(mz_list[find_mz_idx_start], new_mz_resolution))
find_mz_idx_start=find_mz_idx_start+1
# next_mz might be a range
k=0
while(k<len(next_mz_range)):
next_mz= next_mz_range[k]
if next_mz in isotope_table:
found2=0
iso_list_next_mz=isotope_table[next_mz]
for j in range (0, len(iso_list_next_mz)):
next_iso=iso_list_next_mz[j]
if next_iso[0]==-1:
continue
# if RT_index_array[np.float32(next_iso[0])]>RT_index_array[np.float32(current_peak)]+tolerance_RT:
# break
# if RT_index_array[np.float32(current_peak)]-tolerance_RT<=RT_index_array[np.float32(next_iso[0])] and RT_index_array[np.float32(next_iso[0])]<=RT_index_array[np.float32(current_peak)]+tolerance_RT: # and current_iso[3] >= ((next_iso[3]*3)/4) :
# within tolerance. Check RT range
a=current_iso[1]
b=current_iso[2]
c=next_iso[1]
d=next_iso[2]
if np.abs(current_iso[0]-next_iso[0])<=k0_tolerance or (a<=d and b>=c): # (a<=d and b>=c)or (np.abs(a-d)<=k0_tolerance and np.abs(b-c)<=k0_tolerance): #overlapped
found2=1
break
if found2==1:
found1=1
isotope_table[next_mz][j]=[-1] #remove it
# add pred_iso to cluster
isotope_cluster[id].append([current_mz, current_iso])
current_iso=next_iso
current_peak=current_iso[0]
current_mz=next_mz
############
next_mz_exact=round(current_mz+isotope_gap[z], new_mz_resolution)
next_mz_range=[]
next_mz_range.append(next_mz_exact)
mz_tolerance_10ppm=round((next_mz_exact*ppm)/10**6, new_mz_resolution)
mz_left_limit=round(next_mz_exact-mz_tolerance_10ppm, new_mz_resolution)
mz_right_limit=round(next_mz_exact+mz_tolerance_10ppm, new_mz_resolution)
# mz_tolerance=int(round(mz_tolerance_10ppm/new_mz_unit, new_mz_resolution))
find_mz_idx_start= bisect.bisect_left(mz_list, mz_left_limit)
while len(mz_list)!=find_mz_idx_start and round(mz_list[find_mz_idx_start], new_mz_resolution)<=mz_right_limit:
next_mz_range.append(round(mz_list[find_mz_idx_start], new_mz_resolution))
find_mz_idx_start=find_mz_idx_start+1
############
k=0
else:
k=k+1
else:
k=k+1
if found1==1:
# add pred_iso to cluster
isotope_cluster[id].append([current_mz, current_iso])
# isotope_cluster[id].append([z]) # charge
else: #else: insert them in to the single iso table
# id=len(isotope_cluster)
isotope_cluster[id].append([current_mz, current_iso])
# isotope_cluster[id].append([z])
isotope_table[mz][i]=[-1] #remove it
# if DEBUG==1:
# break
#########################################
# print(len(isotope_cluster.keys()))
total_cluster=len(isotope_cluster.keys())
temp_isotope_cluster=copy.deepcopy(isotope_cluster)
isotope_cluster=defaultdict(list)
total_clusters=len(temp_isotope_cluster.keys())
for i in range (0, total_clusters):
ftr=copy.deepcopy(temp_isotope_cluster[i])
isotope_cluster[round(ftr[0][0], new_mz_resolution)].append(ftr) # starting m/z of the 1st isotope
# isotope_cluster[round(ftr[0][0], 2)].append(ftr) #
temp_isotope_cluster=0
cluster_for_rt.append([len(isotope_cluster), isotope_cluster])
#isotope_cluster[mz]=[[[mz,iso],[mz,iso]],[],[]]
# gc.collect()
##########################################
cluster_for_rt=sorted(cluster_for_rt, reverse=True, key=itemgetter(0))
i=1
if len(cluster_for_rt)>0:
cluster_dict=copy.deepcopy(cluster_for_rt[0][1])
while i<len(cluster_for_rt):
cluster_for_rt_keys=sorted(cluster_for_rt[i][1].keys())
for mz in cluster_for_rt_keys:
for ftr_new in cluster_for_rt[i][1][mz]:
cluster_found=0
mz_tolerance_ppm=round((mz*ppm)/10**6, new_mz_resolution)
mz_left_limit=round(mz-mz_tolerance_ppm, new_mz_resolution)
mz_right_limit=round(mz+mz_tolerance_ppm, new_mz_resolution)
mz_range=[]
mz_list=sorted(cluster_dict.keys())
find_mz_idx_start= bisect.bisect_left(mz_list, mz_left_limit)
while len(mz_list)!=find_mz_idx_start and round(mz_list[find_mz_idx_start], new_mz_resolution)<=mz_right_limit:
mz_range.append(round(mz_list[find_mz_idx_start], new_mz_resolution))
find_mz_idx_start=find_mz_idx_start+1
for mz in mz_range:
if mz in cluster_dict: #mono isotopes matched
# do merge
for ftr_idx in range (0, len(cluster_dict[mz])): #its a list
ftr=cluster_dict[mz][ftr_idx]
if ftr[0][0]<=ftr_new[0][0]: #iterate over the iso of ftr to see which iso of ftr match with monoiso of new_ftr
a=ftr_new[0][1][1]
b=ftr_new[0][1][2]
found_iso=-1
for isotope in range (0, len(ftr)):
c=ftr[isotope][1][1]
d=ftr[isotope][1][2]
if (a<=d and b>=c) or np.abs(round(ftr_new[0][1][0]-ftr[isotope][1][0], 2))<=k0_tolerance: #overlap
found_iso=isotope #old ftr er kar shate mile
break
if np.abs(k0_index_array[np.float32(b)]-k0_index_array[np.float32(c)])<=E or np.abs(k0_index_array[np.float32(a)]-k0_index_array[np.float32(d)])<=E:
found_iso=isotope #old ftr er kar shate mile
break
if found_iso>-1: # mono iso of new ftr matched with found_iso of ftr
ftr_i=0
for isotope in range (found_iso, min((len(ftr), len(ftr_new)))):
cluster_dict[mz][ftr_idx][isotope][1][1]=min(cluster_dict[mz][ftr_idx][isotope][1][1], ftr_new[ftr_i][1][1])
cluster_dict[mz][ftr_idx][isotope][1][2]=max(cluster_dict[mz][ftr_idx][isotope][1][2], ftr_new[ftr_i][1][2])
cluster_dict[mz][ftr_idx][isotope][1][3]=cluster_dict[mz][ftr_idx][isotope][1][3] + ftr_new[ftr_i][1][3]
cluster_dict[mz][ftr_idx][isotope][1][4].extend(ftr_new[ftr_i][1][4])
temp=list(set(cluster_dict[mz][ftr_idx][isotope][1][4]))
cluster_dict[mz][ftr_idx][isotope][1][4]=temp
cluster_dict[mz][ftr_idx][isotope][1][0]=round((cluster_dict[mz][ftr_idx][isotope][1][1]+cluster_dict[mz][ftr_idx][isotope][1][2])/2, k0_resolution)
ftr_i=ftr_i+1
while ftr_i < len(ftr_new):
cluster_dict[mz][ftr_idx].append(ftr_new[ftr_i])
ftr_i=ftr_i+1
# cluster_dict[mz][ftr_idx].append(z)
cluster_found=1
break
else:
a=ftr[0][1][1]
b=ftr[0][1][2]
found_iso=-1
for isotope in range (0, len(ftr_new)): #iterate over the iso of new feature to see which iso of new feature match with monoiso of ftr
c=ftr_new[isotope][1][1]
d=ftr_new[isotope][1][2]
if (a<=d and b>=c) or np.abs(round(ftr_new[isotope][1][0]-ftr[0][1][0], 2))<=k0_tolerance: #overlap
found_iso=isotope
break
if np.abs(k0_index_array[np.float32(b)]-k0_index_array[np.float32(c)])<=E or np.abs(k0_index_array[np.float32(a)]-k0_index_array[np.float32(d)])<=E:
found_iso=isotope #old ftr er kar shate mile
break
if found_iso>-1:
old_ftr_i=0
for isotope in range (found_iso, min((len(ftr), len(ftr_new)))):
cluster_dict[mz][ftr_idx][old_ftr_i][1][1]=min(cluster_dict[mz][ftr_idx][old_ftr_i][1][1], ftr_new[isotope][1][1])
cluster_dict[mz][ftr_idx][old_ftr_i][1][2]=max(cluster_dict[mz][ftr_idx][old_ftr_i][1][2], ftr_new[isotope][1][2])
cluster_dict[mz][ftr_idx][old_ftr_i][1][3]=cluster_dict[mz][ftr_idx][old_ftr_i][1][3] + ftr_new[isotope][1][3]
cluster_dict[mz][ftr_idx][old_ftr_i][1][4].extend(ftr_new[isotope][1][4])
temp=list(set(cluster_dict[mz][ftr_idx][old_ftr_i][1][4]))
cluster_dict[mz][ftr_idx][old_ftr_i][1][4]=temp
cluster_dict[mz][ftr_idx][old_ftr_i][1][0]=round((cluster_dict[mz][ftr_idx][old_ftr_i][1][1]+cluster_dict[mz][ftr_idx][old_ftr_i][1][2])/2, k0_resolution)
old_ftr_i=old_ftr_i+1
isotope=isotope+1
while isotope < len(ftr_new):
cluster_dict[mz][ftr_idx].append(ftr_new[isotope])
isotope=isotope+1
old_ftr_i=found_iso-1
while old_ftr_i>=0:
cluster_dict[mz][ftr_idx].appendleft(ftr_new[old_ftr_i])
old_ftr_i=old_ftr_i-1
# cluster_dict[mz][ftr_idx].append(z)
cluster_found=1
break
if cluster_found==1:
break
if cluster_found==1:
break
if cluster_found==1:
break
if cluster_found==0:
cluster_dict[mz].append(ftr_new)
i=i+1
# all done. Now cluster_dict give you a list of features for the current feature in feature_table
cluster_dict_keys=sorted(cluster_dict.keys())
found=0
for mz in cluster_dict_keys:
if np.abs(round(ftr_list[f][0][0]-mz, new_mz_resolution))<=mz_tolerance:
temp_list=[]
k0_list=[]
for ftr in cluster_dict[mz]:
# temp_list.append([len(ftr), ftr])
found_k0=0
for k0 in k0_list:
if np.abs(k0-ftr[0][1][0])<=k0_tolerance:
found_k0=1
break
if found_k0==0:
temp_list.append(ftr)
k0_list.append(ftr[0][1][0])
for ftr in temp_list:
temp_ftr=copy.deepcopy(ftr_list[f])
temp_ftr[0].append([ftr[0][1][1], ftr[0][1][2]])
new_feature_table[round(temp_ftr[0][1][5], mz_resolution)].append(temp_ftr)
total_feature=total_feature+1
found=1
#
if found==0:
not_found=not_found+1
print('mz key %g, found:%d, not found:%d, out of %d'%(mz_key, total_feature, not_found, total_feature_input))
##############################################
print('ppm %d, k0_tol %g, A %d, E %d'%(ppm, k0_tolerance, A, E))
f=gzip.open(scanpath+sample_name+'_k0_matched_cluster_part_'+str(target_part), 'wb') #7-p02-3
pickle.dump(new_feature_table, f, protocol=3)
f.close()
print('end time %g '%(time()-start_time))