-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathadvAE_cnn_mnist.lua
265 lines (238 loc) · 7.99 KB
/
advAE_cnn_mnist.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
require 'nn';
require 'image';
mnist = require 'mnist';
require 'optim';
require 'gnuplot';
--require 'cutorch';
--require 'cunn';
--require 'cudnn';
require './BinarizedNeurons'
zSize = 14
--encoder
encoder = nn.Sequential();
encoder:add(nn.SpatialConvolution(1,6,5,5,1,1,2,2)) --1
encoder:add(nn.ReLU()) --2
encoder:add(nn.SpatialMaxPooling(2, 2, 2, 2)) --3
-- size: 6X14X14
encoder:add(nn.SpatialConvolution(6,16,5,5,1,1,2,2)) --4
encoder:add(nn.ReLU()) --5
encoder:add(nn.SpatialMaxPooling(2, 2, 2, 2)) --6
-- size: 16X7X7
encoder:add(nn.View(-1):setNumInputDims(3)) --7
encoder:add(nn.Linear(784,120)) --8
encoder:add(nn.ReLU()) --9
encoder:add(nn.Linear(120,84)) --10
encoder:add(nn.ReLU()) --11
encoder:add(nn.Linear(84,zSize)) --12
binariser = nn.Sequential();
binariser:add(BinarizedNeurons())
--encoder = torch.load('model_MNIST2.t7')
--encoder:remove(13)
--encoder:add(nn.SoftMax())
--decoder
decoder = nn.Sequential()
decoder:add(nn.Linear(zSize, 84)) --1
decoder:add(nn.BatchNormalization(84)) --2
decoder:add(nn.ReLU()) --3
decoder:add(nn.Linear(84, 120)) --4
decoder:add(nn.BatchNormalization(120)) --5
decoder:add(nn.ReLU()) --6
decoder:add(nn.Linear(120, 784)) --7
decoder:add(nn.BatchNormalization(784)) --8
decoder:add(nn.ReLU()) --9
decoder:add(nn.View(16,7,7)) --10
--size: 16X7X7
decoder:add(nn.SpatialMaxUnpooling(encoder:get(6))) --11
decoder:add(nn.SpatialConvolution(16,6,5,5,1,1,2,2)) --12
decoder:add(nn.ReLU()) --13
--size: 6X14X14
decoder:add(nn.SpatialMaxUnpooling(encoder:get(3))) --14
decoder:add(nn.SpatialConvolution(6,1,5,5,1,1,2,2)) --15
decoder:add(nn.Sigmoid()) --16
--size: 1X28X28
--autoencoder
autoencoder = nn.Sequential()
autoencoder:add(encoder)
autoencoder:add(binariser)
autoencoder:add(decoder)
autoencoder = autoencoder--:cuda()
print(autoencoder)
--adversary network
adversary = nn.Sequential()
adversary:add(nn.Linear(zSize, 64))
--adversary:add(nn.BatchNormalization(64))
adversary:add(nn.ReLU())
adversary:add(nn.Linear(64, 16))
--adversary:add(nn.BatchNormalization(16))
adversary:add(nn.ReLU())
adversary:add(nn.Linear(16, 10))
--adversary:add(nn.BatchNormalization(1))
adversary:add(nn.LogSoftMax())
adversary = adversary--:cuda()
print(adversary)
--load MNIST data
trainData = mnist.traindataset().data:double():div(255):reshape(60000,1,28,28)--:cuda()
trainlabels = (mnist.traindataset().label+1)--:cuda()
N = mnist.traindataset().size
testData = mnist.testdataset().data:double():div(255):reshape(10000,1,28,28)--:cuda()
testlabels = (mnist.testdataset().label+1)--:cuda()
teSize = mnist.testdataset().size
print(N,teSize)
--[[
trainset = torch.load('cifar10-train.t7')
testset = torch.load('cifar10-test.t7')
classes = {'airplane', 'automobile', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'}
trainData = trainset.data:double():div(255):cuda()
--]]
--[[trainData = torch.ByteTensor(trainset.data:size())
print(#trainData)
for i=1,trainData:size()[1] do
trainData[i] = image.rgb2hsv(trainset.data[i])
end
trainData = trainData:double():div(255):cuda()
--]]
--[[trainlabel=trainset.label:cuda()
N = trainData:size()[1]
testData = testset.data
testlabels = testset.label:cuda()
--]]
local theta,gradTheta = autoencoder:getParameters()
local thetaAdv,gradThetaAdv = adversary:getParameters()
local criterion = nn.BCECriterion()--:cuda()
local classification_criterion = nn.ClassNLLCriterion()--:cuda()
local x,y
batchSize = 3000
iterations = 50
local feval = function(params)
if theta~=params then
theta:copy(params)
end
gradTheta:zero()
gradThetaAdv:zero()
--print(#x)
--[[local x1 = encoder:forward(x)
local x2 = torch.sign(x1)
local x2 = nn.Threshold(0,0):forward(x2)
local xHat = decoder:forward(x2)
--]]
local xHat = autoencoder:forward(x)
local loss = criterion:forward(xHat,x)
local gradLoss = criterion:backward(xHat,x)
--[[decoder:backward(x2,gradLoss)
local gradEnc = decoder:updateGradInput(x2,gradLoss)
encoder:backward(x,gradEnc)
--]]
autoencoder:backward(x,gradLoss)
-- Train adversary to maximise log probability of real samples: max_D log(D(x))
local pred = adversary:forward(encoder.output)
advLoss = classification_criterion:forward(pred,y)
local gradAdvLoss = classification_criterion:backward(pred,y)
adversary:backward(encoder.output,gradAdvLoss)
local gradAdv = adversary:updateGradInput(encoder.output, gradAdvLoss)
encoder:backward(x,gradAdv)
-- Train encoder (generator) to play a minimax game with the adversary (discriminator): min_G max_D log(1 - D(G(x)))
--[[local minimaxLoss = criterion:forward(pred,YReal) -- Technically use max_G max_D log(D(G(x))) for same fixed point, stronger initial gradients
loss = loss + minimaxLoss
local gradMinimaxLoss = criterion:backward(pred,YReal)
local gradMinimax = adversary:updateGradInput(encoder.output, gradMinimaxLoss)
encoder:backward(x,gradMinimax)
--]]
return loss, gradTheta
end
local advFeval = function(params)
if thetaAdv~=params then
thetaAdv:copy(params)
end
return advLoss, gradThetaAdv
end
--Train
print('Training Starting')
local optimParams = {learningRate = 0.001}
local advOptimParams = {learningRate = 0.001}
local _,loss
local losses, advLosses = {},{}
for epoch=1,iterations do
autoencoder:training()
collectgarbage()
print('Epoch '..epoch..'/'..iterations)
for n=1,N,batchSize do
collectgarbage()
x = trainData:narrow(1,n,batchSize)--:cuda()
--print(x:size())
y = trainlabels:narrow(1,n,batchSize)--:cuda()
_,loss = optim.adam(feval,theta,optimParams)
losses[#losses + 1] = loss[1]
_,loss = optim.adam(advFeval,thetaAdv,advOptimParams)
advLosses[#advLosses + 1] = loss[1]
end
local plots={{'reconstruction', torch.linspace(1,#losses,#losses), torch.Tensor(losses), '-'}}
plots[2]={'Adversary', torch.linspace(1,#advLosses,#advLosses), torch.Tensor(advLosses), '-'}
totLoss = torch.Tensor(losses)+torch.Tensor(advLosses)
plots[3]={'Recons+Adversary', torch.linspace(1,totLoss:size(1),totLoss:size(1)), totLoss, '-'}
gnuplot.pngfigure('AdvAE/Training_mnist_advCnn.png')
gnuplot.plot(table.unpack(plots))
gnuplot.ylabel('Loss')
gnuplot.xlabel('Batch #')
gnuplot.plotflush()
--permute training data
indices = torch.randperm(trainData:size(1)):long()--:cuda()
trainData = trainData:index(1,indices)--:cuda()
trainlabels = trainlabels:index(1,indices)--:cuda()
autoencoder:evaluate()
x = testData:narrow(1,1,50)--:cuda()
--[[local x_hsv = torch.Tensor(x:size()):typeAs(x)
for i=1,x:size()[1] do
x_hsv[i] = image.rgb2hsv(x[i])
end
--]]
x_hsv = x;
local xHat_hsv= autoencoder:forward(x_hsv)
--[[xHat_hsv = xHat_hsv:mul(255):byte()
for i=1,50 do
print(i)
print(xHat_hsv[i][1]:min(),xHat_hsv[i][1]:max())
print(xHat_hsv[i][2]:min(),xHat_hsv[i][2]:max())
print(xHat_hsv[i][3]:min(),xHat_hsv[i][3]:max())
end
--]]
--[[local xHat = torch.Tensor(xHat_hsv:size()):typeAs(xHat_hsv)
for i=1,xHat_hsv:size()[1] do
xHat[i] = image.hsv2rgb(xHat_hsv[i])
end
--]]
--print (#x)
---print(#xHat)
--temp=torch.cat(image.toDisplayTensor(x,2,50),image.toDisplayTensor(xHat,2,50),2)
--print (#temp)
image.save('AdvAE/Reconstructions_mnist_temp.png', torch.cat(image.toDisplayTensor(x,2,50),image.toDisplayTensor(xHat_hsv,2,50),2))
end
print('Testing')
x = testData:narrow(1,1,50)--:cuda()
--[[local x_hsv = torch.Tensor(x:size()):typeAs(x)
for i=1,x:size()[1] do
x_hsv[i] = image.rgb2hsv(x[i])
end
--]]
x_hsv = x
local xHat_hsv= autoencoder:forward(x_hsv)
--[[xHat_hsv = xHat_hsv:mul(255):byte()
for i=1,50 do
print(i)
print(x_hsv[i][1]:min(),x_hsv[i][1]:min())
print(x_hsv[i][2]:min(),x_hsv[i][2]:min())
print(x_hsv[i][3]:min(),x_hsv[i][3]:min())
end
--]]
--[[local xHat = torch.Tensor(xHat_hsv:size()):typeAs(xHat_hsv)
for i=1,xHat_hsv:size()[1] do
xHat[i] = image.hsv2rgb(xHat_hsv[i])
end
--]]
--print (#x)
---print(#xHat)
--temp=torch.cat(image.toDisplayTensor(x,2,50),image.toDisplayTensor(xHat,2,50),2)
--print (#temp)
image.save('AdvAE/Reconstructions_mnist_cnn.png', torch.cat(image.toDisplayTensor(x,2,50),image.toDisplayTensor(xHat_hsv,2,50),2))
torch.save('AdvAE/encoder_1.t7',encoder)
torch.save('AdvAE/decoder_1.t7',decoder)