-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcollect.py
executable file
·533 lines (415 loc) · 22.5 KB
/
collect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#!/usr/bin/env python3
from __future__ import print_function
import os
import sys
import argparse
import logging
import random
import time
try:
import numpy as np
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
from carla.client import make_carla_client
from carla.tcp import TCPConnectionError
from carla.carla_game import CarlaGame
from carla.planner import Planner
from carla.agent import HumanAgent, ForwardAgent, CommandFollower, LaneFollower
import modules.data_writer as writer
from modules.noiser import Noiser
from modules.collision_checker import CollisionChecker
# for DAgger and DART data collection
from coil_core import validate_single_model
from drive import coil_agent
WINDOW_WIDTH = 800
WINDOW_HEIGHT = 600
MINI_WINDOW_WIDTH = 320
MINI_WINDOW_HEIGHT = 180
# This is the number of frames that the car takes to fall from the ground
NUMBER_OF_FRAMES_CAR_FLIES = 25 # multiply by ten
def make_controlling_agent(args, town_name):
"""
Make the controlling agent object depending on what was selected.
Options:
Forward Agent: Trivial agent that just accelerate forward.
Human Agent: Agent controlled by a human driver, currently only by keyboard.
Command Follower: A* planner followed by a PID controller (used as expert for data collection)
"""
if args.controlling_agent == "ForwardAgent":
return ForwardAgent()
elif args.controlling_agent == "HumanAgent":
return HumanAgent()
elif args.controlling_agent == "CommandFollower":
return CommandFollower(town_name)
else:
raise ValueError("Selected Agent Does not exist")
def get_directions(measurements, target_transform, planner):
"""
Function to get the high level commands and the waypoints.
The waypoints correspond to the local planning, the near path the car has to follow.
Args:
measurements: measurements file containing global information
target_transform: target location
planner: to get the shortest path from current location to target location
Returns:
directions: high level navigational commands to follow
"""
# Get the current position from the measurements
current_point = measurements.player_measurements.transform
directions = planner.get_next_command(
(current_point.location.x,
current_point.location.y, 0.22),
(current_point.orientation.x,
current_point.orientation.y,
current_point.orientation.z),
(target_transform.location.x, target_transform.location.y, 0.22),
(target_transform.orientation.x, target_transform.orientation.y,
target_transform.orientation.z)
)
return directions
def new_episode(client, carla_settings, position, vehicle_pair, pedestrian_pair, set_of_weathers):
"""
Start a CARLA new episode and generate a target to be pursued on this episode
Args:
client: the client connected to CARLA now
carla_settings: a carla settings object to be used
position: start position in the town
vehicle_pair: range of permissible number of vehicles
pedestrian_pair: range of permissible number of pedestrians
set_of_weathers: permissible set of weathers
Returns:
Returns the configuration of the current episode to be used for data collection
"""
# Every time the seeds for the episode are different
number_of_vehicles = random.randint(vehicle_pair[0], vehicle_pair[1])
number_of_pedestrians = random.randint(pedestrian_pair[0], pedestrian_pair[1])
weather = random.choice(set_of_weathers)
carla_settings.set(
NumberOfVehicles=number_of_vehicles,
NumberOfPedestrians=number_of_pedestrians,
WeatherId=weather
)
scene = client.load_settings(carla_settings)
client.start_episode(position)
return scene.map_name, scene.player_start_spots, weather, number_of_vehicles, number_of_pedestrians, \
carla_settings.SeedVehicles, carla_settings.SeedPedestrians
def check_episode_has_noise(lat_noise_percent, long_noise_percent):
"""
Checks if the noise is to be added to the current episode (only for inject triangular perturbations)
Args:
lat_noise_percent: % noise to inject in steering
long_noise_percent: % noise to inject in throttle / brake
Returns:
lat_noise: bool value whether to inject noise in the current episode
long_noise: bool value whether to inject noise in the current episode
"""
lat_noise = False
long_noise = False
if random.randint(0, 101) < lat_noise_percent:
lat_noise = True
if random.randint(0, 101) < long_noise_percent:
long_noise = True
return lat_noise, long_noise
def reach_timeout(current_time, timeout_period):
if current_time > timeout_period:
return True
return False
def calculate_timeout(start_point, end_point, planner):
"""
Calucaltes the time limit between start_point and end_point considering a fixed speed of 5 km/hr.
Args:
start_point: initial position
end_point: target_position
planner: to get the shortest part between start_point and end_point
Returns:
time limit considering a fixed speed of 5 km/hr
"""
path_distance = planner.get_shortest_path_distance(
[start_point.location.x, start_point.location.y, 0.22], [
start_point.orientation.x, start_point.orientation.y, 0.22], [
end_point.location.x, end_point.location.y, end_point.location.z], [
end_point.orientation.x, end_point.orientation.y, end_point.orientation.z])
return ((path_distance / 1000.0) / 5.0) * 3600.0 + 10.0
def reset_episode(client, carla_game, settings_module, show_render):
"""
Reset the episode to a random configuration from the permissible settings
Args:
client: carla client object
carla_game: for visualization
settings_module: permissible configuration values
show_render: for visualization
Returns:
episode_characteristics: configuration for the current episode
"""
random_pose = random.choice(settings_module.POSITIONS)
town_name, player_start_spots, weather, number_of_vehicles, number_of_pedestrians, \
seeds_vehicles, seeds_pedestrians = new_episode(client,
settings_module.make_carla_settings(),
random_pose[0],
settings_module.NumberOfVehicles,
settings_module.NumberOfPedestrians,
settings_module.set_of_weathers)
# Here when verbose is activated we also show the rendering window.
carla_game.initialize_game(town_name, render_mode=show_render)
carla_game.start_timer()
# An extra planner is needed in order to calculate timeouts
planner = Planner(town_name)
carla_game.set_objective(player_start_spots[random_pose[1]])
player_target_transform = player_start_spots[random_pose[1]]
last_episode_time = time.time()
timeout = calculate_timeout(player_start_spots[random_pose[0]],
player_target_transform, planner)
episode_characteristics = {
"town_name": town_name,
"player_target_transform": player_target_transform,
"last_episode_time": last_episode_time,
"timeout": timeout,
"weather": weather,
"number_of_vehicles": number_of_vehicles,
"number_of_pedestrians": number_of_pedestrians,
"seeds_vehicles": seeds_vehicles,
"seeds_pedestrians": seeds_pedestrians,
"start_pose": random_pose[0],
"end_pose": random_pose[1]
}
return episode_characteristics
def suppress_logs(episode_number):
if not os.path.exists('_output_logs'):
os.mkdir('_output_logs')
sys.stdout = open(os.path.join('_output_logs', 'collect_' + str(os.getpid()) + '_' + str(episode_number) + ".out"), "a", buffering=1)
sys.stderr = open(os.path.join('_output_logs', 'err_collect_' + str(os.getpid()) + '_' + str(episode_number) + ".out"),"a", buffering=1)
def inject_dart_noise(action, covariance_mat):
"""
Inject gaussian noise with the computed covariance matrix for DART
Compute the noisy control as per DART code - https://github.com/BerkeleyAutomation/DART
Args:
control: control values to be perturbed
covariance_mat: covariance mat computed as per DART code
Returns:
dart_control: perturbed control values as per DART
"""
dart_control = np.random.multivariate_normal(action, covariance_mat)
return dart_control
def get_normalized_covariance_mat(args, settings_module):
"""
Run the agent to get the covariance matrix for the DART noise model
Args:
args: current configuration settings
Returns:
normalized_covariance_mat: computed covariance matrix
"""
normalized_covariance_mat = validate_single_model.execute(gpu=args.gpu, yaml_file=settings_module.yaml_config_file)
return normalized_covariance_mat
def update_controls(control, perturbations, brake=False):
"""
Update controls with the perturbed values
Args:
control: original control values to be updated
perturbations: perturbed control values
brake: whether to update brake or not
Returns:
control: updated perturbed controls
"""
control.steer = perturbations.steer
control.throttle = perturbations.throttle
if brake:
control.brake = perturbations.brake
return control
def collect(client, args):
"""
The main loop for the data collection process.
Args:
client: carla client object
args: arguments passed on the data collection main.
Returns:
None
"""
# Here we instantiate a sample carla settings. The name of the configuration should be passed as a parameter.
settings_module = __import__('dataset_configurations.' + (args.data_configuration_name), fromlist=['dataset_configurations'])
# Suppress output to some logfile, that is useful when running a massive number of collectors
if not args.verbose:
suppress_logs(args.episode_number)
# Instatiate the carlagame debug screen. This is basically an interface to visualize the data collection process
carla_game = CarlaGame(False, args.debug, WINDOW_WIDTH, WINDOW_HEIGHT, MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
# The collision checker , checks for collision at any moment.
collision_checker = CollisionChecker()
##### Start the episode #####
# This returns all the aspects from the episodes.
episode_aspects = reset_episode(client, carla_game, settings_module, args.debug)
planner = Planner(episode_aspects["town_name"])
# Instantiate the expert agent (CommandFollower), depending on the parameter
controlling_agent_expert = make_controlling_agent(args, episode_aspects["town_name"])
if args.mode == 'dagger':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
checkpoint = torch.load(settings_module.model_checkpoint)
controlling_agent = coil_agent.CoILAgent(checkpoint, episode_aspects['town_name'])
if args.mode == 'dart':
normalized_covariance_mat = get_normalized_covariance_mat(args, settings_module)
# The noise object to add triangular perturbations (in the expert controls) to some episodes is instanced
longitudinal_noiser = Noiser('Throttle', frequency=15, intensity=10, min_noise_time_amount=2.0)
lateral_noiser = Noiser('Spike', frequency=25, intensity=4, min_noise_time_amount=0.5)
episode_lateral_noise, episode_longitudinal_noise = check_episode_has_noise(settings_module.lat_noise_percent, settings_module.long_noise_percent)
##### DATASET writer initialization #####
# here we make the full path for the dataset that is going to be created.
# Make dataset path
writer.make_dataset_path(args.data_path)
# We start by writing the metadata for the entire data collection process.
# That basically involves writing the configuration that was set on the settings module.
writer.add_metadata(args.data_path, settings_module)
# Also write the metadata for the current episode
writer.add_episode_metadata(args.data_path, str(args.episode_number).zfill(5), episode_aspects)
# We start the episode number with the one set as parameter
episode_number = args.episode_number
try:
image_count = 0
# The maximum episode is equal to the current episode plus the number of episodes you want to run
maximun_episode = int(args.episode_number) + int(args.number_of_episodes)
while carla_game.is_running() and episode_number < maximun_episode:
# we add the vehicle and the connection outside of the game.
measurements, sensor_data = client.read_data()
# run a step for the expert agent
control_expert, controller_state = controlling_agent_expert.run_step(measurements,
sensor_data,
[],
episode_aspects['player_target_transform'])
# Get the directions, also important to save those for future training
directions = get_directions(measurements,
episode_aspects['player_target_transform'], planner)
# run a step of the trained policy for on-policy data collection
if args.mode == 'dagger':
control = controlling_agent.run_step(measurements,
sensor_data,
directions,
episode_aspects['player_target_transform'])
controller_state.update({'directions': directions})
# this noise module should be active only in case of 'expert' mode
# if this is a noisy episode, add noise to the controls
if episode_longitudinal_noise:
control_noise, _, _ = longitudinal_noiser.compute_noise(control_expert,
measurements.player_measurements.forward_speed * 3.6)
else:
control_noise = control_expert
if episode_lateral_noise:
control_noise_f, _, _ = lateral_noiser.compute_noise(control_noise,
measurements.player_measurements.forward_speed * 3.6)
else:
control_noise_f = control_noise
# Set the player position
# if you want to debug also render everything
if args.debug:
objects_to_render = controller_state.copy()
objects_to_render['player_transform'] = measurements.player_measurements.transform
objects_to_render['agents'] = measurements.non_player_agents
objects_to_render["draw_pedestrians"] = args.draw_pedestrians
objects_to_render["draw_vehicles"] = args.draw_vehicles
objects_to_render["draw_traffic_lights"] = args.draw_traffic_lights
# Comment the following two lines to see the waypoints and routes.
objects_to_render['waypoints'] = None
objects_to_render['route'] = None
# Render with the provided map
carla_game.render(sensor_data['CameraRGB'], objects_to_render)
# Check two important conditions for the episode, if it has ended
# and if the episode was a success
episode_ended = collision_checker.test_collision(measurements.player_measurements) or \
reach_timeout(measurements.game_timestamp / 1000.0,
episode_aspects["timeout"]) or \
carla_game.is_reset(measurements.player_measurements.transform.location)
episode_success = not (collision_checker.test_collision(
measurements.player_measurements) or
reach_timeout(measurements.game_timestamp / 1000.0,
episode_aspects["timeout"]))
# Check if there is collision. Start a new episode if there is a collision but repeat the same by not incrementing episode number.
if episode_ended:
if episode_success:
episode_number += 1
else:
if args.mode == 'expert':
# If the episode did go well and we were recording, delete this episode
if not args.not_record:
writer.delete_episode(args.data_path, str(episode_number-1).zfill(5))
else:
# also collect failed episodes as they contain critical states not present in expert data
episode_number += 1
episode_lateral_noise, episode_longitudinal_noise = check_episode_has_noise(settings_module.lat_noise_percent, settings_module.long_noise_percent)
# We reset the episode and receive all the characteristics of this episode.
episode_aspects = reset_episode(client, carla_game, settings_module, args.debug)
writer.add_episode_metadata(args.data_path, str(episode_number).zfill(5),episode_aspects)
# Reset the image count
image_count = 0
# We do this to avoid the frames that the car is coming from the sky.
if image_count >= NUMBER_OF_FRAMES_CAR_FLIES and not args.not_record:
st = time.time()
writer.add_data_point(measurements, control_expert, control_noise_f, sensor_data,
controller_state,
args.data_path, str(episode_number).zfill(5),
str(image_count - NUMBER_OF_FRAMES_CAR_FLIES),
settings_module.sensors_frequency)
if args.mode == 'dart':
# inject noise using the normalized_covariance_mat computed for DART
controls_to_be_perturbed = np.asarray([control_noise_f.steer, control_noise_f.throttle, control_noise_f.brake])
dart_perturbed_controls = inject_dart_noise(controls_to_be_perturbed, normalized_covariance_mat)
control_noise_f = update_controls(control_noise_f, dart_perturbed_controls)
# End the loop by sending controller
if args.mode == 'expert' or args.mode == 'dart':
client.send_control(control_noise_f)
elif args.mode == 'dagger':
client.send_control(control)
# Add one more image to the counting
image_count += 1
except TCPConnectionError as error:
"""
If there is any connection error we delete the current episode,
This avoid incomplete episodes
"""
import traceback
traceback.print_exc()
if not args.not_record:
writer.delete_episode(args.data_path, str(episode_number).zfill(5))
raise error
except KeyboardInterrupt:
import traceback
traceback.print_exc()
if not args.not_record:
writer.delete_episode(args.data_path, str(episode_number).zfill(5))
def main():
"""
The main function of the data collection process
"""
argparser = argparse.ArgumentParser(description='CARLA Manual Control Client')
argparser.add_argument('-v', '--verbose', action='store_true', dest='verbose', help='print debug information')
argparser.add_argument('--host', metavar='H', default='localhost', help='IP of the host server (default: localhost)')
argparser.add_argument('-p', '--port', metavar='P', default=2000, type=int, help='TCP port to listen to (default: 2000)')
argparser.add_argument('-pt','--data-path', metavar='H', default='.', dest='data_path', help=' Where the recorded data will be placed')
argparser.add_argument('--data-configuration-name', metavar='H', default='coil_training_dataset_singlecamera', dest='data_configuration_name', help=' Name of the data configuration file that should be place on .dataset_configurations')
argparser.add_argument('-c', '--controlling_agent', default='CommandFollower',
help='the controller that is going to be used by the main vehicle.'
' Options: '
' HumanAgent - Control your agent with a keyboard.'
' ForwardAgent - A trivial agent that goes forward'
' CommandFollower - A lane follower agent that follow commands from the planner')
argparser.add_argument('-db', '--debug', action='store_true', help='enable the debug screen mode, on this mode a rendering screen will show'
'information about the agent')
argparser.add_argument('-dp', '--draw-pedestrians', dest='draw_pedestrians', action='store_true', help='add pedestrians to the debug screen')
argparser.add_argument('-dv', '--draw-vehicles', dest='draw_vehicles', action='store_true', help='add vehicles dots to the debug screen')
argparser.add_argument('-dt', '--draw-traffic-lights', dest='draw_traffic_lights', action='store_true', help='add traffic lights dots to the debug screen')
argparser.add_argument('-nr', '--not-record', action='store_true', default=False, help='flag for not recording the data ( Testing purposes)')
argparser.add_argument('-e', '--episode-number', metavar='E', dest='episode_number', default=0, type=int, help='The episode number that it will start to record.')
argparser.add_argument('-n', '--number-episodes', metavar='N', dest='number_of_episodes', default=999999999, help='The number of episodes to run, default infinite.')
argparser.add_argument('-m', '--mode', default='expert', type=str, help='data collection mode - expert/dagger/dart')
args = argparser.parse_args()
log_level = logging.DEBUG if args.verbose else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
while True:
try:
with make_carla_client(args.host, args.port) as client:
collect(client, args)
break
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')