-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinference.py
39 lines (30 loc) · 1015 Bytes
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from diffusers import StableDiffusionPipeline
import torch
import base64
import numpy as np
def process_data(data: dict) -> dict:
return {
"prompt": [data.pop("prompt", data)] * min(data.pop("number", 2), 5),
"guidance_scale": data.pop("guidance_scale", 7.5),
"num_inference_steps": min(data.pop("num_inference_steps", 50), 50),
"height": 512,
"width": 512,
}
def model_fn(model_dir: str):
t2i_pipe = StableDiffusionPipeline.from_pretrained(
model_dir,
)
if torch.cuda.is_available():
t2i_pipe = t2i_pipe.to("cuda")
t2i_pipe.enable_attention_slicing()
return t2i_pipe
def predict_fn(data: dict, hgf_pipe) -> dict:
with torch.autocast("cuda"):
images = hgf_pipe(**process_data(data))["images"]
# return dictionary, which will be json serializable
return {
"images": [
base64.b64encode(np.array(image).astype(np.uint8)).decode("utf-8")
for image in images
]
}