-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathjumpstart_builder.py
922 lines (809 loc) · 38 KB
/
jumpstart_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
import copy
import re
from abc import ABC, abstractmethod
from datetime import datetime, timedelta
from typing import Type, Any, List, Dict, Optional
import logging
from botocore.exceptions import ClientError
from sagemaker.enums import Tag
from sagemaker.model import Model
from sagemaker import model_uris
from sagemaker.serve.model_server.djl_serving.prepare import prepare_djl_js_resources
from sagemaker.serve.model_server.djl_serving.utils import _get_admissible_tensor_parallel_degrees
from sagemaker.serve.model_server.multi_model_server.prepare import prepare_mms_js_resources
from sagemaker.serve.model_server.tgi.prepare import prepare_tgi_js_resources, _create_dir_structure
from sagemaker.serve.mode.function_pointers import Mode
from sagemaker.serve.utils.exceptions import (
LocalDeepPingException,
LocalModelOutOfMemoryException,
LocalModelInvocationException,
LocalModelLoadException,
SkipTuningComboException,
)
from sagemaker.serve.utils.optimize_utils import (
_generate_model_source,
_update_environment_variables,
_extract_speculative_draft_model_provider,
_is_image_compatible_with_optimization_job,
_generate_channel_name,
_extract_optimization_config_and_env,
_is_optimized,
_custom_speculative_decoding,
SPECULATIVE_DRAFT_MODEL,
_is_inferentia_or_trainium,
)
from sagemaker.serve.utils.predictors import (
DjlLocalModePredictor,
TgiLocalModePredictor,
TransformersLocalModePredictor,
)
from sagemaker.serve.utils.local_hardware import (
_get_nb_instance,
_get_ram_usage_mb,
)
from sagemaker.serve.utils.telemetry_logger import _capture_telemetry
from sagemaker.serve.utils.tuning import (
_pretty_print_results_jumpstart,
_serial_benchmark,
_concurrent_benchmark,
_more_performant,
_sharded_supported,
)
from sagemaker.serve.utils.types import ModelServer
from sagemaker.base_predictor import PredictorBase
from sagemaker.jumpstart.model import JumpStartModel
from sagemaker.utils import Tags
_DJL_MODEL_BUILDER_ENTRY_POINT = "inference.py"
_NO_JS_MODEL_EX = "HuggingFace JumpStart Model ID not detected. Building for HuggingFace Model ID."
_JS_SCOPE = "inference"
_CODE_FOLDER = "code"
_JS_ENABLED_MODEL_SERVERS = {
ModelServer.DJL_SERVING,
ModelServer.TGI,
}
logger = logging.getLogger(__name__)
class JumpStart(ABC):
"""DJL build logic for ModelBuilder()"""
def __init__(self):
self.model = None
self.serve_settings = None
self.sagemaker_session = None
self.model_path = None
self.dependencies = None
self.modes = None
self.mode = None
self.model_server = None
self.image_uri = None
self._is_custom_image_uri = False
self.vpc_config = None
self._original_deploy = None
self.secret_key = None
self.js_model_config = None
self._inferred_parallel_degree = None
self._inferred_data_type = None
self._inferred_max_tokens = None
self.pysdk_model = None
self.model_uri = None
self.existing_properties = None
self.prepared_for_tgi = None
self.prepared_for_djl = None
self.prepared_for_mms = None
self.schema_builder = None
self.instance_type = None
self.nb_instance_type = None
self.ram_usage_model_load = None
self.model_hub = None
self.model_metadata = None
self.role_arn = None
self.is_fine_tuned = None
self.is_compiled = False
self.is_quantized = False
self.speculative_decoding_draft_model_source = None
self.deployment_config_name = None
self.name = None
@abstractmethod
def _prepare_for_mode(self, **kwargs):
"""Placeholder docstring"""
@abstractmethod
def _get_client_translators(self):
"""Placeholder docstring"""
def _is_jumpstart_model_id(self) -> bool:
"""Placeholder docstring"""
if self.model is None:
return False
try:
model_uris.retrieve(model_id=self.model, model_version="*", model_scope=_JS_SCOPE)
except KeyError:
logger.warning(_NO_JS_MODEL_EX)
return False
logger.info("JumpStart Model ID detected.")
return True
def _create_pre_trained_js_model(self) -> Type[Model]:
"""Placeholder docstring"""
pysdk_model = JumpStartModel(
self.model,
vpc_config=self.vpc_config,
sagemaker_session=self.sagemaker_session,
name=self.name,
)
self._original_deploy = pysdk_model.deploy
pysdk_model.deploy = self._js_builder_deploy_wrapper
return pysdk_model
@_capture_telemetry("jumpstart.deploy")
def _js_builder_deploy_wrapper(self, *args, **kwargs) -> Type[PredictorBase]:
"""Placeholder docstring"""
env = {}
if "mode" in kwargs and kwargs.get("mode") != self.mode:
overwrite_mode = kwargs.get("mode")
# mode overwritten by customer during model.deploy()
logger.warning(
"Deploying in %s Mode, overriding existing configurations set for %s mode",
overwrite_mode,
self.mode,
)
if overwrite_mode == Mode.SAGEMAKER_ENDPOINT:
self.mode = self.pysdk_model.mode = Mode.SAGEMAKER_ENDPOINT
if (
not hasattr(self, "prepared_for_djl")
or not hasattr(self, "prepared_for_tgi")
or not hasattr(self, "prepared_for_mms")
):
if not _is_optimized(self.pysdk_model):
self.pysdk_model.model_data, env = self._prepare_for_mode()
elif overwrite_mode == Mode.LOCAL_CONTAINER:
self.mode = self.pysdk_model.mode = Mode.LOCAL_CONTAINER
if not hasattr(self, "prepared_for_djl"):
(
self.existing_properties,
self.js_model_config,
self.prepared_for_djl,
) = prepare_djl_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
elif not hasattr(self, "prepared_for_tgi"):
self.js_model_config, self.prepared_for_tgi = prepare_tgi_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
elif not hasattr(self, "prepared_for_mms"):
self.js_model_config, self.prepared_for_mms = prepare_mms_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
else:
raise ValueError("Mode %s is not supported!" % overwrite_mode)
self.pysdk_model.env.update(env)
serializer = self.schema_builder.input_serializer
deserializer = self.schema_builder._output_deserializer
if self.mode == Mode.LOCAL_CONTAINER:
if self.model_server == ModelServer.DJL_SERVING:
predictor = DjlLocalModePredictor(
self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer
)
elif self.model_server == ModelServer.TGI:
predictor = TgiLocalModePredictor(
self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer
)
elif self.model_server == ModelServer.MMS:
predictor = TransformersLocalModePredictor(
self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer
)
ram_usage_before = _get_ram_usage_mb()
self.modes[str(Mode.LOCAL_CONTAINER)].create_server(
self.image_uri,
600,
None,
predictor,
self.pysdk_model.env,
jumpstart=True,
)
ram_usage_after = _get_ram_usage_mb()
self.ram_usage_model_load = max(ram_usage_after - ram_usage_before, 0)
return predictor
if "endpoint_logging" not in kwargs:
kwargs["endpoint_logging"] = True
if hasattr(self, "nb_instance_type"):
kwargs.update({"instance_type": self.nb_instance_type})
if "mode" in kwargs:
del kwargs["mode"]
if "role" in kwargs:
self.pysdk_model.role = kwargs.get("role")
del kwargs["role"]
predictor = self._original_deploy(*args, **kwargs)
predictor.serializer = serializer
predictor.deserializer = deserializer
return predictor
def _build_for_djl_jumpstart(self):
"""Placeholder docstring"""
env = {}
_create_dir_structure(self.model_path)
if self.mode == Mode.LOCAL_CONTAINER:
if not hasattr(self, "prepared_for_djl"):
(
self.existing_properties,
self.js_model_config,
self.prepared_for_djl,
) = prepare_djl_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
elif self.mode == Mode.SAGEMAKER_ENDPOINT and hasattr(self, "prepared_for_djl"):
self.nb_instance_type = self.instance_type or _get_nb_instance()
self.pysdk_model.model_data, env = self._prepare_for_mode()
self.pysdk_model.env.update(env)
def _build_for_tgi_jumpstart(self):
"""Placeholder docstring"""
env = {}
if self.mode == Mode.LOCAL_CONTAINER:
if not hasattr(self, "prepared_for_tgi"):
self.js_model_config, self.prepared_for_tgi = prepare_tgi_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
elif self.mode == Mode.SAGEMAKER_ENDPOINT and hasattr(self, "prepared_for_tgi"):
self.pysdk_model.model_data, env = self._prepare_for_mode()
self.pysdk_model.env.update(env)
def _build_for_mms_jumpstart(self):
"""Placeholder docstring"""
env = {}
if self.mode == Mode.LOCAL_CONTAINER:
if not hasattr(self, "prepared_for_mms"):
self.js_model_config, self.prepared_for_mms = prepare_mms_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
elif self.mode == Mode.SAGEMAKER_ENDPOINT and hasattr(self, "prepared_for_mms"):
self.pysdk_model.model_data, env = self._prepare_for_mode()
self.pysdk_model.env.update(env)
def _tune_for_js(self, sharded_supported: bool, max_tuning_duration: int = 1800):
"""Tune for Jumpstart Models in Local Mode.
Args:
sharded_supported (bool): Indicates whether sharding is supported by this ``Model``
max_tuning_duration (int): The maximum timeout to deploy this ``Model`` locally.
Default: ``1800``
returns:
Tuned Model.
"""
if self.mode == Mode.SAGEMAKER_ENDPOINT:
logger.warning(
"Tuning is only a %s capability. Returning original model.", Mode.LOCAL_CONTAINER
)
return self.pysdk_model
num_shard_env_var_name = "SM_NUM_GPUS"
if "OPTION_TENSOR_PARALLEL_DEGREE" in self.pysdk_model.env.keys():
num_shard_env_var_name = "OPTION_TENSOR_PARALLEL_DEGREE"
initial_env_vars = copy.deepcopy(self.pysdk_model.env)
admissible_tensor_parallel_degrees = _get_admissible_tensor_parallel_degrees(
self.js_model_config
)
if len(admissible_tensor_parallel_degrees) > 1 and not sharded_supported:
admissible_tensor_parallel_degrees = [1]
logger.warning(
"Sharding across multiple GPUs is not supported for this model. "
"Model can only be sharded across [1] GPU"
)
benchmark_results = {}
best_tuned_combination = None
timeout = datetime.now() + timedelta(seconds=max_tuning_duration)
for tensor_parallel_degree in admissible_tensor_parallel_degrees:
if datetime.now() > timeout:
logger.info("Max tuning duration reached. Tuning stopped.")
break
self.pysdk_model.env.update({num_shard_env_var_name: str(tensor_parallel_degree)})
try:
logger.info("Trying tensor parallel degree: %s", tensor_parallel_degree)
predictor = self.pysdk_model.deploy(model_data_download_timeout=max_tuning_duration)
avg_latency, p90, avg_tokens_per_second = _serial_benchmark(
predictor, self.schema_builder.sample_input
)
throughput_per_second, standard_deviation = _concurrent_benchmark(
predictor, self.schema_builder.sample_input
)
tested_env = copy.deepcopy(self.pysdk_model.env)
logger.info(
"Average latency: %s, throughput/s: %s for configuration: %s",
avg_latency,
throughput_per_second,
tested_env,
)
benchmark_results[avg_latency] = [
tested_env,
p90,
avg_tokens_per_second,
throughput_per_second,
standard_deviation,
]
if not best_tuned_combination:
best_tuned_combination = [
avg_latency,
tensor_parallel_degree,
None,
p90,
avg_tokens_per_second,
throughput_per_second,
standard_deviation,
]
else:
tuned_configuration = [
avg_latency,
tensor_parallel_degree,
None,
p90,
avg_tokens_per_second,
throughput_per_second,
standard_deviation,
]
if _more_performant(best_tuned_combination, tuned_configuration):
best_tuned_combination = tuned_configuration
except LocalDeepPingException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. " "Failed to invoke the model server: %s",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except LocalModelOutOfMemoryException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. "
"Out of memory when loading the model: %s",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except LocalModelInvocationException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. "
"Failed to invoke the model server: %s"
"Please check that model server configurations are as expected "
"(Ex. serialization, deserialization, content_type, accept).",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except LocalModelLoadException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. " "Failed to load the model: %s.",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except SkipTuningComboException as e:
logger.warning(
"Deployment with %s: %s"
"was expected to be successful. However failed with: %s. "
"Trying next combination.",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except Exception: # pylint: disable=W0703
logger.exception(
"Deployment unsuccessful with %s: %s. " "with uncovered exception",
num_shard_env_var_name,
tensor_parallel_degree,
)
if best_tuned_combination:
self.pysdk_model.env.update({num_shard_env_var_name: str(best_tuned_combination[1])})
_pretty_print_results_jumpstart(benchmark_results, [num_shard_env_var_name])
logger.info(
"Model Configuration: %s was most performant with avg latency: %s, "
"p90 latency: %s, average tokens per second: %s, throughput/s: %s, "
"standard deviation of request %s",
self.pysdk_model.env,
best_tuned_combination[0],
best_tuned_combination[3],
best_tuned_combination[4],
best_tuned_combination[5],
best_tuned_combination[6],
)
else:
self.pysdk_model.env.update(initial_env_vars)
logger.debug(
"Failed to gather any tuning results. "
"Please inspect the stack trace emitted from live logging for more details. "
"Falling back to default model configurations: %s",
self.pysdk_model.env,
)
return self.pysdk_model
@_capture_telemetry("djl_jumpstart.tune")
def tune_for_djl_jumpstart(self, max_tuning_duration: int = 1800):
"""Tune for Jumpstart Models with DJL DLC"""
return self._tune_for_js(sharded_supported=True, max_tuning_duration=max_tuning_duration)
@_capture_telemetry("tgi_jumpstart.tune")
def tune_for_tgi_jumpstart(self, max_tuning_duration: int = 1800):
"""Tune for Jumpstart Models with TGI DLC"""
sharded_supported = _sharded_supported(self.model, self.js_model_config)
return self._tune_for_js(
sharded_supported=sharded_supported, max_tuning_duration=max_tuning_duration
)
def set_deployment_config(self, config_name: str, instance_type: str) -> None:
"""Sets the deployment config to apply to the model.
Args:
config_name (str):
The name of the deployment config to apply to the model.
Call list_deployment_configs to see the list of config names.
instance_type (str):
The instance_type that the model will use after setting
the config.
"""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
raise Exception("Cannot set deployment config to an uninitialized model.")
self.pysdk_model.set_deployment_config(config_name, instance_type)
self.deployment_config_name = config_name
self.instance_type = instance_type
# JS-benchmarked models only include SageMaker-provided SD models
if self.pysdk_model.additional_model_data_sources:
self.speculative_decoding_draft_model_source = "sagemaker"
self.pysdk_model.add_tags(
{"Key": Tag.SPECULATIVE_DRAFT_MODEL_PROVIDER, "Value": "sagemaker"},
)
self.pysdk_model.remove_tag_with_key(Tag.OPTIMIZATION_JOB_NAME)
self.pysdk_model.remove_tag_with_key(Tag.FINE_TUNING_MODEL_PATH)
self.pysdk_model.remove_tag_with_key(Tag.FINE_TUNING_JOB_NAME)
def get_deployment_config(self) -> Optional[Dict[str, Any]]:
"""Gets the deployment config to apply to the model.
Returns:
Optional[Dict[str, Any]]: Deployment config to apply to this model.
"""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
self._build_for_jumpstart()
return self.pysdk_model.deployment_config
def display_benchmark_metrics(self, **kwargs):
"""Display Markdown Benchmark Metrics for deployment configs."""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
self._build_for_jumpstart()
self.pysdk_model.display_benchmark_metrics(**kwargs)
def list_deployment_configs(self) -> List[Dict[str, Any]]:
"""List deployment configs for ``This`` model in the current region.
Returns:
List[Dict[str, Any]]: A list of deployment configs.
"""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
self._build_for_jumpstart()
return self.pysdk_model.list_deployment_configs()
def _is_fine_tuned_model(self) -> bool:
"""Checks whether a fine-tuned model exists."""
return self.model_metadata and (
self.model_metadata.get("FINE_TUNING_MODEL_PATH")
or self.model_metadata.get("FINE_TUNING_JOB_NAME")
)
def _update_model_data_for_fine_tuned_model(self, pysdk_model: Type[Model]) -> Type[Model]:
"""Set the model path and data and add fine-tuning tags for the model."""
# TODO: determine precedence of FINE_TUNING_MODEL_PATH and FINE_TUNING_JOB_NAME
if fine_tuning_model_path := self.model_metadata.get("FINE_TUNING_MODEL_PATH"):
if not re.match("^(https|s3)://([^/]+)/?(.*)$", fine_tuning_model_path):
raise ValueError(
f"Invalid path for FINE_TUNING_MODEL_PATH: {fine_tuning_model_path}."
)
pysdk_model.model_data["S3DataSource"]["S3Uri"] = fine_tuning_model_path
pysdk_model.add_tags(
{"Key": Tag.FINE_TUNING_MODEL_PATH, "Value": fine_tuning_model_path}
)
logger.info(
"FINE_TUNING_MODEL_PATH detected. Using fine-tuned model found in %s.",
fine_tuning_model_path,
)
return pysdk_model
if fine_tuning_job_name := self.model_metadata.get("FINE_TUNING_JOB_NAME"):
try:
response = self.sagemaker_session.sagemaker_client.describe_training_job(
TrainingJobName=fine_tuning_job_name
)
fine_tuning_model_path = response["ModelArtifacts"]["S3ModelArtifacts"]
pysdk_model.model_data["S3DataSource"]["S3Uri"] = fine_tuning_model_path
pysdk_model.add_tags(
[
{"key": Tag.FINE_TUNING_JOB_NAME, "value": fine_tuning_job_name},
{"key": Tag.FINE_TUNING_MODEL_PATH, "value": fine_tuning_model_path},
]
)
logger.info(
"FINE_TUNING_JOB_NAME detected. Using fine-tuned model found in %s.",
fine_tuning_model_path,
)
return pysdk_model
except ClientError:
raise ValueError(
f"Invalid job name for FINE_TUNING_JOB_NAME: {fine_tuning_job_name}."
)
raise ValueError(
"Input model not found. Please provide either `model_path`, or "
"`FINE_TUNING_MODEL_PATH` or `FINE_TUNING_JOB_NAME` under `model_metadata`."
)
def _build_for_jumpstart(self):
"""Placeholder docstring"""
if hasattr(self, "pysdk_model") and self.pysdk_model is not None:
return self.pysdk_model
# we do not pickle for jumpstart. set to none
self.secret_key = None
pysdk_model = self._create_pre_trained_js_model()
image_uri = pysdk_model.image_uri
logger.info("JumpStart ID %s is packaged with Image URI: %s", self.model, image_uri)
if self._is_fine_tuned_model():
self.is_fine_tuned = True
pysdk_model = self._update_model_data_for_fine_tuned_model(pysdk_model)
if self._is_gated_model(pysdk_model) and self.mode != Mode.SAGEMAKER_ENDPOINT:
raise ValueError(
"JumpStart Gated Models are only supported in SAGEMAKER_ENDPOINT mode."
)
if "djl-inference" in image_uri:
logger.info("Building for DJL JumpStart Model ID...")
self.model_server = ModelServer.DJL_SERVING
self.pysdk_model = pysdk_model
self.image_uri = self.pysdk_model.image_uri
self._build_for_djl_jumpstart()
self.pysdk_model.tune = self.tune_for_djl_jumpstart
elif "tgi-inference" in image_uri:
logger.info("Building for TGI JumpStart Model ID...")
self.model_server = ModelServer.TGI
self.pysdk_model = pysdk_model
self.image_uri = self.pysdk_model.image_uri
self._build_for_tgi_jumpstart()
self.pysdk_model.tune = self.tune_for_tgi_jumpstart
elif "huggingface-pytorch-inference:" in image_uri:
logger.info("Building for MMS JumpStart Model ID...")
self.model_server = ModelServer.MMS
self.pysdk_model = pysdk_model
self.image_uri = self.pysdk_model.image_uri
self._build_for_mms_jumpstart()
elif self.mode != Mode.SAGEMAKER_ENDPOINT:
raise ValueError(
"JumpStart Model ID was not packaged "
"with djl-inference, tgi-inference, or mms-inference container."
)
if self.role_arn:
self.pysdk_model.role = self.role_arn
if self.sagemaker_session:
self.pysdk_model.sagemaker_session = self.sagemaker_session
return self.pysdk_model
def _optimize_for_jumpstart(
self,
output_path: Optional[str] = None,
instance_type: Optional[str] = None,
tags: Optional[Tags] = None,
job_name: Optional[str] = None,
accept_eula: Optional[bool] = None,
quantization_config: Optional[Dict] = None,
compilation_config: Optional[Dict] = None,
speculative_decoding_config: Optional[Dict] = None,
sharding_config: Optional[Dict] = None,
env_vars: Optional[Dict] = None,
vpc_config: Optional[Dict] = None,
kms_key: Optional[str] = None,
max_runtime_in_sec: Optional[int] = None,
) -> Optional[Dict[str, Any]]:
"""Runs a model optimization job.
Args:
output_path (Optional[str]): Specifies where to store the compiled/quantized model.
instance_type (str): Target deployment instance type that the model is optimized for.
tags (Optional[Tags]): Tags for labeling a model optimization job. Defaults to ``None``.
job_name (Optional[str]): The name of the model optimization job. Defaults to ``None``.
accept_eula (bool): For models that require a Model Access Config, specify True or
False to indicate whether model terms of use have been accepted.
The `accept_eula` value must be explicitly defined as `True` in order to
accept the end-user license agreement (EULA) that some
models require. (Default: None).
quantization_config (Optional[Dict]): Quantization configuration. Defaults to ``None``.
compilation_config (Optional[Dict]): Compilation configuration. Defaults to ``None``.
speculative_decoding_config (Optional[Dict]): Speculative decoding configuration.
Defaults to ``None``
sharding_config (Optional[Dict]): Model sharding configuration.
Defaults to ``None``
env_vars (Optional[Dict]): Additional environment variables to run the optimization
container. Defaults to ``None``.
vpc_config (Optional[Dict]): The VpcConfig set on the model. Defaults to ``None``.
kms_key (Optional[str]): KMS key ARN used to encrypt the model artifacts when uploading
to S3. Defaults to ``None``.
max_runtime_in_sec (Optional[int]): Maximum job execution time in seconds. Defaults to
``None``.
Returns:
Dict[str, Any]: Model optimization job input arguments.
"""
if self._is_gated_model() and accept_eula is not True:
raise ValueError(
f"Model '{self.model}' requires accepting end-user license agreement (EULA)."
)
is_compilation = (not quantization_config) and (
(compilation_config is not None) or _is_inferentia_or_trainium(instance_type)
)
pysdk_model_env_vars = dict()
if is_compilation:
pysdk_model_env_vars = self._get_neuron_model_env_vars(instance_type)
optimization_config, override_env = _extract_optimization_config_and_env(
quantization_config, compilation_config, sharding_config
)
if not optimization_config and is_compilation:
override_env = override_env or pysdk_model_env_vars
optimization_config = {
"ModelCompilationConfig": {
"OverrideEnvironment": override_env,
}
}
if speculative_decoding_config:
self._set_additional_model_source(speculative_decoding_config)
else:
deployment_config = self._find_compatible_deployment_config(None)
if deployment_config:
self.pysdk_model.set_deployment_config(
config_name=deployment_config.get("DeploymentConfigName"),
instance_type=deployment_config.get("InstanceType"),
)
pysdk_model_env_vars = self.pysdk_model.env
model_source = _generate_model_source(self.pysdk_model.model_data, accept_eula)
optimization_env_vars = _update_environment_variables(pysdk_model_env_vars, env_vars)
output_config = {"S3OutputLocation": output_path}
if kms_key:
output_config["KmsKeyId"] = kms_key
deployment_config_instance_type = (
self.pysdk_model.deployment_config.get("DeploymentArgs", {}).get("InstanceType")
if self.pysdk_model.deployment_config
else None
)
self.instance_type = instance_type or deployment_config_instance_type or _get_nb_instance()
create_optimization_job_args = {
"OptimizationJobName": job_name,
"ModelSource": model_source,
"DeploymentInstanceType": self.instance_type,
"OptimizationConfigs": [optimization_config],
"OutputConfig": output_config,
"RoleArn": self.role_arn,
}
if optimization_env_vars:
create_optimization_job_args["OptimizationEnvironment"] = optimization_env_vars
if max_runtime_in_sec:
create_optimization_job_args["StoppingCondition"] = {
"MaxRuntimeInSeconds": max_runtime_in_sec
}
if tags:
create_optimization_job_args["Tags"] = tags
if vpc_config:
create_optimization_job_args["VpcConfig"] = vpc_config
if accept_eula:
self.pysdk_model.accept_eula = accept_eula
if isinstance(self.pysdk_model.model_data, dict):
self.pysdk_model.model_data["S3DataSource"]["ModelAccessConfig"] = {
"AcceptEula": True
}
optimization_env_vars = _update_environment_variables(optimization_env_vars, override_env)
if optimization_env_vars:
self.pysdk_model.env.update(optimization_env_vars)
if quantization_config or sharding_config or is_compilation:
return create_optimization_job_args
return None
def _is_gated_model(self, model=None) -> bool:
"""Determine if ``this`` Model is Gated
Args:
model (Model): Jumpstart Model
Returns:
bool: ``True`` if ``this`` Model is Gated
"""
s3_uri = model.model_data if model else self.pysdk_model.model_data
if isinstance(s3_uri, dict):
s3_uri = s3_uri.get("S3DataSource").get("S3Uri")
if s3_uri is None:
return False
return "private" in s3_uri
def _set_additional_model_source(
self,
speculative_decoding_config: Optional[Dict[str, Any]] = None,
accept_eula: Optional[bool] = None,
) -> None:
"""Set Additional Model Source to ``this`` model.
Args:
speculative_decoding_config (Optional[Dict[str, Any]]): Speculative decoding config.
accept_eula (Optional[bool]): For models that require a Model Access Config.
"""
if speculative_decoding_config:
model_provider = _extract_speculative_draft_model_provider(speculative_decoding_config)
channel_name = _generate_channel_name(self.pysdk_model.additional_model_data_sources)
if model_provider == "sagemaker":
additional_model_data_sources = (
self.pysdk_model.deployment_config.get("DeploymentArgs", {}).get(
"AdditionalDataSources"
)
if self.pysdk_model.deployment_config
else None
)
if additional_model_data_sources is None:
deployment_config = self._find_compatible_deployment_config(
speculative_decoding_config
)
if deployment_config:
self.pysdk_model.set_deployment_config(
config_name=deployment_config.get("DeploymentConfigName"),
instance_type=deployment_config.get("InstanceType"),
)
else:
raise ValueError(
"Cannot find deployment config compatible for optimization job."
)
self.pysdk_model.env.update(
{"OPTION_SPECULATIVE_DRAFT_MODEL": f"{SPECULATIVE_DRAFT_MODEL}/{channel_name}"}
)
self.pysdk_model.add_tags(
{"Key": Tag.SPECULATIVE_DRAFT_MODEL_PROVIDER, "Value": "sagemaker"},
)
else:
self.pysdk_model = _custom_speculative_decoding(
self.pysdk_model, speculative_decoding_config, accept_eula
)
def _find_compatible_deployment_config(
self, speculative_decoding_config: Optional[Dict] = None
) -> Optional[Dict[str, Any]]:
"""Finds compatible model deployment config for optimization job.
Args:
speculative_decoding_config (Optional[Dict]): Speculative decoding config.
Returns:
Optional[Dict[str, Any]]: A compatible model deployment config for optimization job.
"""
model_provider = _extract_speculative_draft_model_provider(speculative_decoding_config)
for deployment_config in self.pysdk_model.list_deployment_configs():
image_uri = deployment_config.get("deployment_config", {}).get("ImageUri")
if _is_image_compatible_with_optimization_job(image_uri):
if (
model_provider == "sagemaker"
and deployment_config.get("DeploymentArgs", {}).get("AdditionalDataSources")
) or model_provider == "custom":
return deployment_config
# There's no matching config from jumpstart to add sagemaker draft model location
if model_provider == "sagemaker":
return None
# fall back to the default jumpstart model deployment config for optimization job
return self.pysdk_model.deployment_config
def _get_neuron_model_env_vars(
self, instance_type: Optional[str] = None
) -> Optional[Dict[str, Any]]:
"""Gets Neuron model env vars.
Args:
instance_type (Optional[str]): Instance type.
Returns:
Optional[Dict[str, Any]]: Neuron Model environment variables.
"""
metadata_configs = self.pysdk_model._metadata_configs
if metadata_configs:
metadata_config = metadata_configs.get(self.pysdk_model.config_name)
resolve_config = metadata_config.resolved_config if metadata_config else None
if resolve_config and instance_type not in resolve_config.get(
"supported_inference_instance_types", []
):
neuro_model_id = resolve_config.get("hosting_neuron_model_id")
neuro_model_version = resolve_config.get("hosting_neuron_model_version", "*")
if neuro_model_id:
job_model = JumpStartModel(
neuro_model_id,
model_version=neuro_model_version,
vpc_config=self.vpc_config,
)
return job_model.env
return None