-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathsteps.py
1112 lines (950 loc) · 46.9 KB
/
steps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""The `Step` definitions for SageMaker Pipelines Workflows."""
from __future__ import absolute_import
import abc
import warnings
from enum import Enum
from typing import Dict, List, Set, Union, Optional, Any, TYPE_CHECKING
import attr
from sagemaker import Session
from sagemaker.estimator import EstimatorBase, _TrainingJob
from sagemaker.inputs import CreateModelInput, TrainingInput, TransformInput, FileSystemInput
from sagemaker.model import Model
from sagemaker.pipeline import PipelineModel
from sagemaker.processing import (
ProcessingInput,
ProcessingJob,
ProcessingOutput,
Processor,
)
from sagemaker.transformer import Transformer, _TransformJob
from sagemaker.tuner import HyperparameterTuner, _TuningJob
from sagemaker.workflow import is_pipeline_variable
from sagemaker.workflow.entities import (
Entity,
RequestType,
)
from sagemaker.workflow.pipeline_context import _JobStepArguments
from sagemaker.workflow.properties import (
PropertyFile,
Properties,
)
from sagemaker.workflow.entities import PipelineVariable
from sagemaker.workflow.functions import Join, JsonGet
from sagemaker.workflow.retry import RetryPolicy
from sagemaker.workflow.step_outputs import StepOutput
from sagemaker.workflow.utilities import trim_request_dict
if TYPE_CHECKING:
from sagemaker.workflow.step_collections import StepCollection
class StepTypeEnum(Enum):
"""Enum of `Step` types."""
CONDITION = "Condition"
CREATE_MODEL = "Model"
PROCESSING = "Processing"
REGISTER_MODEL = "RegisterModel"
TRAINING = "Training"
TRANSFORM = "Transform"
CALLBACK = "Callback"
TUNING = "Tuning"
LAMBDA = "Lambda"
QUALITY_CHECK = "QualityCheck"
CLARIFY_CHECK = "ClarifyCheck"
EMR = "EMR"
FAIL = "Fail"
AUTOML = "AutoML"
class Step(Entity):
"""Pipeline `Step` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
display_name: Optional[str] = None,
description: Optional[str] = None,
step_type: StepTypeEnum = None,
depends_on: Optional[List[Union[str, "Step", "StepCollection", StepOutput]]] = None,
):
"""Initialize a Step
Args:
name (str): The name of the `Step`.
display_name (str): The display name of the `Step`.
description (str): The description of the `Step`.
step_type (StepTypeEnum): The type of the `Step`.
depends_on (List[Union[str, Step, StepCollection]]): The list of `Step`/`StepCollection`
names or `Step` or `StepCollection`, `StepOutput` instances that the current `Step`
depends on.
"""
self.name = name
self.display_name = display_name
self.description = description
self.step_type = step_type
if depends_on is not None:
self._depends_on = depends_on
else:
self._depends_on = None
@property
def depends_on(self) -> Optional[List[Union[str, "Step", "StepCollection", StepOutput]]]:
"""The list of steps the current `Step` depends on."""
return self._depends_on
@depends_on.setter
def depends_on(self, depends_on: List[Union[str, "Step", "StepCollection", StepOutput]]):
"""Set the list of steps the current step explicitly depends on."""
if depends_on is not None:
self._depends_on = depends_on
else:
self._depends_on = None
@property
@abc.abstractmethod
def arguments(self) -> RequestType:
"""The arguments to the particular `Step` service call."""
@property
def step_only_arguments(self) -> RequestType:
"""The arguments to this Step only.
Compound Steps such as the ConditionStep will have to
override this method to return arguments pertaining to only that step.
"""
return self.arguments
@property
@abc.abstractmethod
def properties(self):
"""The properties of the particular `Step`."""
def to_request(self) -> RequestType:
"""Gets the request structure for workflow service calls."""
request_dict = {
"Name": self.name,
"Type": self.step_type.value,
"Arguments": self.arguments,
}
if self.depends_on:
request_dict["DependsOn"] = list(self.depends_on)
if self.display_name:
request_dict["DisplayName"] = self.display_name
if self.description:
request_dict["Description"] = self.description
return request_dict
def add_depends_on(self, step_names: List[Union[str, "Step", "StepCollection", StepOutput]]):
"""Add `Step` names or `Step` instances to the current `Step` depends on list."""
if not step_names:
return
if not self._depends_on:
self._depends_on = []
self._depends_on.extend(step_names)
@property
def ref(self) -> Dict[str, str]:
"""Gets a reference dictionary for `Step` instances."""
return {"Name": self.name}
# TODO: move this method to CompiledStep
def _find_step_dependencies(
self, step_map: Dict[str, Union["Step", "StepCollection"]]
) -> List[str]:
"""Find all step names this step is dependent on."""
step_dependencies = set()
if self.depends_on:
step_dependencies.update(self._find_dependencies_in_depends_on_list(step_map))
step_dependencies.update(
self._find_dependencies_in_step_arguments(self.step_only_arguments, step_map)
)
return list(step_dependencies)
def _find_dependencies_in_depends_on_list(
self, step_map: Dict[str, Union["Step", "StepCollection"]]
) -> Set[str]:
"""Find dependency steps referenced in the depends-on field of this step."""
# import here to prevent circular import
from sagemaker.workflow.step_collections import StepCollection
dependencies = set()
for step in self.depends_on:
if isinstance(step, Step):
dependencies.add(step.name)
elif isinstance(step, StepCollection):
dependencies.add(step.steps[-1].name)
elif isinstance(step, str):
# step could be the name of a `Step` or a `StepCollection`
dependencies.add(self._get_step_name_from_str(step, step_map))
return dependencies
def _find_dependencies_in_step_arguments(
self, obj: Any, step_map: Dict[str, Union["Step", "StepCollection"]]
):
"""Find the step dependencies referenced in the arguments of this step."""
dependencies = set()
pipeline_variables = Step._find_pipeline_variables_in_step_arguments(obj)
for pipeline_variable in pipeline_variables:
for referenced_step in pipeline_variable._referenced_steps:
if isinstance(referenced_step, Step):
dependencies.add(referenced_step.name)
else:
dependencies.add(self._get_step_name_from_str(referenced_step, step_map))
from sagemaker.workflow.function_step import DelayedReturn
# TODO: we can remove the if-elif once move the validators to JsonGet constructor
if isinstance(pipeline_variable, JsonGet):
self._validate_json_get_function(pipeline_variable, step_map)
elif isinstance(pipeline_variable, DelayedReturn):
# DelayedReturn showing up in arguments, meaning that it's data referenced
# We should convert it to JsonGet and validate the JsonGet object
self._validate_json_get_function(pipeline_variable._to_json_get(), step_map)
return dependencies
def _validate_json_get_function(
self, json_get: JsonGet, step_map: Dict[str, Union["Step", "StepCollection"]]
):
"""Validate the JsonGet function inputs."""
if json_get.property_file:
self._validate_json_get_property_file_reference(json_get=json_get, step_map=step_map)
# TODO: move it to JsonGet constructor
def _validate_json_get_property_file_reference(self, json_get: JsonGet, step_map: dict):
"""Validate the property file reference in JsonGet"""
property_file_reference = json_get.property_file
processing_step = step_map[json_get.step_name]
property_file = None
if isinstance(property_file_reference, str):
if not processing_step.step_type == StepTypeEnum.PROCESSING:
raise ValueError(
f"Invalid JsonGet function {json_get.expr} in step '{self.name}'. "
f"JsonGet function (with property_file) can only be evaluated "
f"on processing step outputs."
)
for file in processing_step.property_files:
if file.name == property_file_reference:
property_file = file
break
elif isinstance(property_file_reference, PropertyFile):
property_file = property_file_reference
if property_file is None:
raise ValueError(
f"Invalid JsonGet function {json_get.expr} in step '{self.name}'. Property file "
f"reference '{property_file_reference}' is undefined in step "
f"'{processing_step.name}'."
)
property_file_output = None
if "ProcessingOutputConfig" in processing_step.arguments:
for output in processing_step.arguments["ProcessingOutputConfig"]["Outputs"]:
if output["OutputName"] == property_file.output_name:
property_file_output = output
if property_file_output is None:
raise ValueError(
f"Processing output name '{property_file.output_name}' defined in property file "
f"'{property_file.name}' not found in processing step '{processing_step.name}'."
)
@staticmethod
def _find_pipeline_variables_in_step_arguments(obj: RequestType) -> List[PipelineVariable]:
"""Recursively find all the pipeline variables in the step arguments."""
pipeline_variables = list()
if isinstance(obj, dict):
for value in obj.values():
if isinstance(value, PipelineVariable):
pipeline_variables.append(value)
else:
pipeline_variables.extend(
Step._find_pipeline_variables_in_step_arguments(value)
)
elif isinstance(obj, list):
for item in obj:
if isinstance(item, PipelineVariable):
pipeline_variables.append(item)
else:
pipeline_variables.extend(Step._find_pipeline_variables_in_step_arguments(item))
return pipeline_variables
@staticmethod
def _get_step_name_from_str(
str_input: str, step_map: Dict[str, Union["Step", "StepCollection"]]
) -> str:
"""Convert a Step or StepCollection name input to step name."""
from sagemaker.workflow.step_collections import StepCollection
if str_input not in step_map:
raise ValueError(f"Step {str_input} is undefined.")
if isinstance(step_map[str_input], StepCollection):
return step_map[str_input].steps[-1].name
return str_input
@staticmethod
def _trim_experiment_config(request_dict: Dict):
"""For job steps, trim the experiment config to keep the trial component display name."""
if request_dict.get("ExperimentConfig", {}).get("TrialComponentDisplayName"):
request_dict["ExperimentConfig"] = {
"TrialComponentDisplayName": request_dict["ExperimentConfig"][
"TrialComponentDisplayName"
]
}
else:
request_dict.pop("ExperimentConfig", None)
@attr.s
class CacheConfig:
"""Configuration class to enable caching in SageMaker Pipelines Workflows.
If caching is enabled, the pipeline attempts to find a previous execution of a `Step`
that was called with the same arguments. `Step` caching only considers successful execution.
If a successful previous execution is found, the pipeline propagates the values
from the previous execution rather than recomputing the `Step`.
When multiple successful executions exist within the timeout period,
it uses the result for the most recent successful execution.
Attributes:
enable_caching (bool): To enable `Step` caching. Defaults to `False`.
expire_after (str): If `Step` caching is enabled, a timeout also needs to defined.
It defines how old a previous execution can be to be considered for reuse.
Value should be an ISO 8601 duration string. Defaults to `None`.
Examples::
'p30d' # 30 days
'P4DT12H' # 4 days and 12 hours
'T12H' # 12 hours
"""
enable_caching: bool = attr.ib(default=False)
expire_after = attr.ib(
default=None, validator=attr.validators.optional(attr.validators.instance_of(str))
)
@property
def config(self):
"""Configures `Step` caching for SageMaker Pipelines Workflows."""
config = {"Enabled": self.enable_caching}
if self.expire_after is not None:
config["ExpireAfter"] = self.expire_after
return {"CacheConfig": config}
class ConfigurableRetryStep(Step):
"""`ConfigurableRetryStep` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
step_type: StepTypeEnum,
display_name: Optional[str] = None,
description: Optional[str] = None,
depends_on: Optional[List[Union[str, Step, "StepCollection"]]] = None,
retry_policies: Optional[List[RetryPolicy]] = None,
):
super().__init__(
name=name,
display_name=display_name,
step_type=step_type,
description=description,
depends_on=depends_on,
)
self.retry_policies = [] if not retry_policies else retry_policies
def add_retry_policy(self, retry_policy: RetryPolicy):
"""Add a policy to the current `ConfigurableRetryStep` retry policies list."""
if not retry_policy:
return
if not self.retry_policies:
self.retry_policies = []
self.retry_policies.append(retry_policy)
def to_request(self) -> RequestType:
"""Gets the request structure for `ConfigurableRetryStep`."""
step_dict = super().to_request()
if self.retry_policies:
step_dict["RetryPolicies"] = self._resolve_retry_policy(self.retry_policies)
return step_dict
@staticmethod
def _resolve_retry_policy(retry_policy_list: List[RetryPolicy]) -> List[RequestType]:
"""Resolve the `ConfigurableRetryStep` retry policy list."""
return [retry_policy.to_request() for retry_policy in retry_policy_list]
class TrainingStep(ConfigurableRetryStep):
"""`TrainingStep` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
step_args: Optional[_JobStepArguments] = None,
estimator: Optional[EstimatorBase] = None,
display_name: Optional[str] = None,
description: Optional[str] = None,
inputs: Optional[Union[TrainingInput, dict, str, FileSystemInput]] = None,
cache_config: Optional[CacheConfig] = None,
depends_on: Optional[List[Union[str, Step, "StepCollection"]]] = None,
retry_policies: Optional[List[RetryPolicy]] = None,
):
"""Construct a `TrainingStep`, given an `EstimatorBase` instance.
In addition to the `EstimatorBase` instance, the other arguments are those
that are supplied to the `fit` method of the `sagemaker.estimator.Estimator`.
Args:
name (str): The name of the `TrainingStep`.
step_args (_JobStepArguments): The arguments for the `TrainingStep` definition.
estimator (EstimatorBase): A `sagemaker.estimator.EstimatorBase` instance.
display_name (str): The display name of the `TrainingStep`.
description (str): The description of the `TrainingStep`.
inputs (Union[str, dict, TrainingInput, FileSystemInput]): Information
about the training data. This can be one of three types:
* (str) the S3 location where training data is saved, or a file:// path in
local mode.
* (dict[str, str] or dict[str, sagemaker.inputs.TrainingInput]) If using multiple
channels for training data, you can specify a dictionary mapping channel names to
strings or :func:`~sagemaker.inputs.TrainingInput` objects.
* (sagemaker.inputs.TrainingInput) - channel configuration for S3 data sources
that can provide additional information as well as the path to the training
dataset.
See :func:`sagemaker.inputs.TrainingInput` for full details.
* (sagemaker.inputs.FileSystemInput) - channel configuration for
a file system data source that can provide additional information as well as
the path to the training dataset.
cache_config (CacheConfig): A `sagemaker.workflow.steps.CacheConfig` instance.
depends_on (List[Union[str, Step, StepCollection]]): A list of `Step`/`StepCollection`
names or `Step` instances or `StepCollection` instances that this `TrainingStep`
depends on.
retry_policies (List[RetryPolicy]): A list of retry policies.
"""
super(TrainingStep, self).__init__(
name, StepTypeEnum.TRAINING, display_name, description, depends_on, retry_policies
)
if not (step_args is not None) ^ (estimator is not None):
raise ValueError("Either step_args or estimator need to be given.")
if step_args:
from sagemaker.workflow.utilities import validate_step_args_input
validate_step_args_input(
step_args=step_args,
expected_caller={Session.train.__name__},
error_message="The step_args of TrainingStep must be obtained from estimator.fit().",
)
self.step_args = step_args
self.estimator = estimator
self.inputs = inputs
self.job_name = None
self._properties = Properties(
step_name=name, step=self, shape_name="DescribeTrainingJobResponse"
)
self.cache_config = cache_config
if self.cache_config:
if (self.step_args and "ProfilerConfig" in self.step_args.func_kwargs) or (
self.estimator is not None and not self.estimator.disable_profiler
):
msg = (
"Profiling is enabled on the provided estimator. "
"The default profiler rule includes a timestamp "
"which will change each time the pipeline is "
"upserted, causing cache misses. If profiling "
"is not needed, set disable_profiler to True on the estimator."
)
warnings.warn(msg)
if not self.step_args:
warnings.warn(
(
'We are deprecating the instantiation of TrainingStep using "estimator".'
'Instead, simply using "step_args".'
),
DeprecationWarning,
)
@property
def arguments(self) -> RequestType:
"""The arguments dictionary that is used to call `create_training_job`.
NOTE: The `CreateTrainingJob` request is not quite the args list that workflow needs.
`ExperimentConfig` attribute cannot be included.
"""
from sagemaker.workflow.utilities import execute_job_functions
from sagemaker.workflow.utilities import _pipeline_config
if self.step_args:
# execute fit function with saved parameters,
# and store args in PipelineSession's _context
execute_job_functions(self.step_args)
# populate request dict with args
estimator = self.step_args.func_args[0]
request_dict = estimator.sagemaker_session.context.args
else:
self.estimator._prepare_for_training(self.job_name)
train_args = _TrainingJob._get_train_args(
self.estimator, self.inputs, experiment_config=dict()
)
request_dict = self.estimator.sagemaker_session._get_train_request(**train_args)
if "HyperParameters" in request_dict:
request_dict["HyperParameters"].pop("sagemaker_job_name", None)
# Continue to pop job name if not explicitly opted-in via config
request_dict = trim_request_dict(request_dict, "TrainingJobName", _pipeline_config)
Step._trim_experiment_config(request_dict)
return request_dict
@property
def properties(self):
"""A `Properties` object representing the `DescribeTrainingJobResponse` data model."""
return self._properties
def to_request(self) -> RequestType:
"""Updates the request dictionary with cache configuration."""
request_dict = super().to_request()
if self.cache_config:
request_dict.update(self.cache_config.config)
return request_dict
class CreateModelStep(ConfigurableRetryStep):
"""`CreateModelStep` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
step_args: Optional[dict] = None,
model: Optional[Union[Model, PipelineModel]] = None,
inputs: Optional[CreateModelInput] = None,
depends_on: Optional[List[Union[str, Step, "StepCollection"]]] = None,
retry_policies: Optional[List[RetryPolicy]] = None,
display_name: Optional[str] = None,
description: Optional[str] = None,
):
"""Construct a `CreateModelStep`, given an `sagemaker.model.Model` instance.
In addition to the `Model` instance, the other arguments are those that are supplied to
the `_create_sagemaker_model` method of the `sagemaker.model.Model._create_sagemaker_model`.
Args:
name (str): The name of the `CreateModelStep`.
step_args (dict): The arguments for the `CreateModelStep` definition (default: None).
model (Model or PipelineModel): A `sagemaker.model.Model`
or `sagemaker.pipeline.PipelineModel` instance (default: None).
inputs (CreateModelInput): A `sagemaker.inputs.CreateModelInput` instance.
(default: None).
depends_on (List[Union[str, Step, StepCollection]]): A list of `Step`/`StepCollection`
names or `Step` instances or `StepCollection` instances that this `CreateModelStep`
depends on (default: None).
retry_policies (List[RetryPolicy]): A list of retry policies (default: None).
display_name (str): The display name of the `CreateModelStep` (default: None).
description (str): The description of the `CreateModelStep` (default: None).
"""
super(CreateModelStep, self).__init__(
name, StepTypeEnum.CREATE_MODEL, display_name, description, depends_on, retry_policies
)
if not (step_args is None) ^ (model is None):
raise ValueError(
"step_args and model are mutually exclusive. Either of them should be provided."
)
self.step_args = step_args
self.model = model
self.inputs = inputs or CreateModelInput()
self._properties = Properties(step_name=name, step=self, shape_name="DescribeModelOutput")
warnings.warn(
(
"We are deprecating the use of CreateModelStep. "
"Instead, please use the ModelStep, which simply takes in the step arguments "
"generated by model.create(). For more, see: "
"https://sagemaker.readthedocs.io/en/stable/"
"amazon_sagemaker_model_building_pipeline.html#model-step"
),
DeprecationWarning,
)
@property
def arguments(self) -> RequestType:
"""The arguments dictionary that is used to call `create_model`.
NOTE: The `CreateModelRequest` is not quite the args list that workflow needs.
"""
from sagemaker.workflow.utilities import _pipeline_config
if self.step_args:
request_dict = self.step_args
else:
if isinstance(self.model, PipelineModel):
self.model._init_sagemaker_session_if_does_not_exist()
request_dict = self.model.sagemaker_session._create_model_request(
name="",
role=self.model.role,
container_defs=self.model.pipeline_container_def(self.inputs.instance_type),
vpc_config=self.model.vpc_config,
enable_network_isolation=self.model.enable_network_isolation,
)
else:
self.model._init_sagemaker_session_if_does_not_exist()
request_dict = self.model.sagemaker_session._create_model_request(
name="",
role=self.model.role,
container_defs=self.model.prepare_container_def(
instance_type=self.inputs.instance_type,
accelerator_type=self.inputs.accelerator_type,
),
vpc_config=self.model.vpc_config,
enable_network_isolation=self.model.enable_network_isolation(),
)
# Continue to pop job name if not explicitly opted-in via config
request_dict = trim_request_dict(request_dict, "ModelName", _pipeline_config)
return request_dict
@property
def properties(self):
"""A `Properties` object representing the `DescribeModelResponse` data model."""
return self._properties
class TransformStep(ConfigurableRetryStep):
"""`TransformStep` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
step_args: Optional[_JobStepArguments] = None,
transformer: Optional[Transformer] = None,
inputs: Optional[TransformInput] = None,
display_name: Optional[str] = None,
description: Optional[str] = None,
cache_config: Optional[CacheConfig] = None,
depends_on: Optional[List[Union[str, Step, "StepCollection"]]] = None,
retry_policies: Optional[List[RetryPolicy]] = None,
):
"""Constructs a `TransformStep`, given a `Transformer` instance.
In addition to the `Transformer` instance, the other arguments are those
that are supplied to the `transform` method of the `sagemaker.transformer.Transformer`.
Args:
name (str): The name of the `TransformStep`.
step_args (_JobStepArguments): The arguments for the `TransformStep` definition.
transformer (Transformer): A `sagemaker.transformer.Transformer` instance.
inputs (TransformInput): A `sagemaker.inputs.TransformInput` instance.
cache_config (CacheConfig): A `sagemaker.workflow.steps.CacheConfig` instance.
display_name (str): The display name of the `TransformStep`.
description (str): The description of the `TransformStep`.
depends_on (List[Union[str, Step, StepCollection]]): A list of `Step`/`StepCollection`
names or `Step` instances or `StepCollection` instances that this `TransformStep`
depends on.
retry_policies (List[RetryPolicy]): A list of retry policies.
"""
super(TransformStep, self).__init__(
name, StepTypeEnum.TRANSFORM, display_name, description, depends_on, retry_policies
)
if not (step_args is not None) ^ (transformer is not None):
raise ValueError("either step_args or transformer need to be given, but not both.")
if step_args:
from sagemaker.workflow.utilities import validate_step_args_input
validate_step_args_input(
step_args=step_args,
expected_caller={Session.transform.__name__},
error_message="The step_args of TransformStep must be obtained "
"from transformer.transform().",
)
self.step_args = step_args
self.transformer = transformer
self.inputs = inputs
self.cache_config = cache_config
self._properties = Properties(
step_name=name, step=self, shape_name="DescribeTransformJobResponse"
)
if not self.step_args:
if inputs is None:
raise ValueError("Inputs can't be None when transformer is given.")
warnings.warn(
(
'We are deprecating the instantiation of TransformStep using "transformer".'
'Instead, simply using "step_args".'
),
DeprecationWarning,
)
@property
def arguments(self) -> RequestType:
"""The arguments dictionary that is used to call `create_transform_job`.
NOTE: The `CreateTransformJob` request is not quite the args list that workflow needs.
`ExperimentConfig` cannot be included in the arguments.
"""
from sagemaker.workflow.utilities import execute_job_functions
from sagemaker.workflow.utilities import _pipeline_config
if self.step_args:
# execute transform function with saved parameters,
# and store args in PipelineSession's _context
execute_job_functions(self.step_args)
# populate request dict with args
transformer = self.step_args.func_args[0]
request_dict = transformer.sagemaker_session.context.args
else:
transform_args = _TransformJob._get_transform_args(
transformer=self.transformer,
data=self.inputs.data,
data_type=self.inputs.data_type,
content_type=self.inputs.content_type,
compression_type=self.inputs.compression_type,
split_type=self.inputs.split_type,
input_filter=self.inputs.input_filter,
output_filter=self.inputs.output_filter,
join_source=self.inputs.join_source,
model_client_config=self.inputs.model_client_config,
experiment_config=dict(),
batch_data_capture_config=self.inputs.batch_data_capture_config,
)
request_dict = self.transformer.sagemaker_session._get_transform_request(
**transform_args
)
# Continue to pop job name if not explicitly opted-in via config
request_dict = trim_request_dict(request_dict, "TransformJobName", _pipeline_config)
Step._trim_experiment_config(request_dict)
return request_dict
@property
def properties(self):
"""A `Properties` object representing the `DescribeTransformJobResponse` data model."""
return self._properties
def to_request(self) -> RequestType:
"""Updates the dictionary with cache configuration."""
request_dict = super().to_request()
if self.cache_config:
request_dict.update(self.cache_config.config)
return request_dict
class ProcessingStep(ConfigurableRetryStep):
"""`ProcessingStep` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
step_args: Optional[_JobStepArguments] = None,
processor: Optional[Processor] = None,
display_name: Optional[str] = None,
description: Optional[str] = None,
inputs: Optional[List[ProcessingInput]] = None,
outputs: Optional[List[ProcessingOutput]] = None,
job_arguments: Optional[List[str]] = None,
code: Optional[str] = None,
property_files: Optional[List[PropertyFile]] = None,
cache_config: Optional[CacheConfig] = None,
depends_on: Optional[List[Union[str, Step, "StepCollection"]]] = None,
retry_policies: Optional[List[RetryPolicy]] = None,
kms_key: Optional[str] = None,
):
"""Construct a `ProcessingStep`, given a `Processor` instance.
In addition to the `Processor` instance, the other arguments are those that are supplied to
the `process` method of the `sagemaker.processing.Processor`.
Args:
name (str): The name of the `ProcessingStep`.
step_args (_JobStepArguments): The arguments for the `ProcessingStep` definition.
processor (Processor): A `sagemaker.processing.Processor` instance.
display_name (str): The display name of the `ProcessingStep`.
description (str): The description of the `ProcessingStep`
inputs (List[ProcessingInput]): A list of `sagemaker.processing.ProcessorInput`
instances. Defaults to `None`.
outputs (List[ProcessingOutput]): A list of `sagemaker.processing.ProcessorOutput`
instances. Defaults to `None`.
job_arguments (List[str]): A list of strings to be passed into the processing job.
Defaults to `None`.
code (str): This can be an S3 URI or a local path to a file with the framework
script to run. Defaults to `None`.
property_files (List[PropertyFile]): A list of property files that workflow looks
for and resolves from the configured processing output list.
cache_config (CacheConfig): A `sagemaker.workflow.steps.CacheConfig` instance.
depends_on (List[Union[str, Step, StepCollection]]): A list of `Step`/`StepCollection`
names or `Step` instances or `StepCollection` instances that this `ProcessingStep`
depends on.
retry_policies (List[RetryPolicy]): A list of retry policies.
kms_key (str): The ARN of the KMS key that is used to encrypt the
user code file. Defaults to `None`.
"""
super(ProcessingStep, self).__init__(
name, StepTypeEnum.PROCESSING, display_name, description, depends_on, retry_policies
)
if not (step_args is not None) ^ (processor is not None):
raise ValueError("either step_args or processor need to be given, but not both.")
if step_args:
from sagemaker.workflow.utilities import validate_step_args_input
validate_step_args_input(
step_args=step_args,
expected_caller={Session.process.__name__},
error_message="The step_args of ProcessingStep must be obtained from processor.run().",
)
self.step_args = step_args
self.processor = processor
self.inputs = inputs
self.outputs = outputs
self.job_arguments = job_arguments
self.code = code
self.property_files = property_files or []
self.job_name = None
self.kms_key = kms_key
self.cache_config = cache_config
self._properties = Properties(
step_name=name, step=self, shape_name="DescribeProcessingJobResponse"
)
if not self.step_args:
# Examine why run method in `sagemaker.processing.Processor`
# mutates the processor instance by setting the instance's
# arguments attribute. Refactor `Processor.run`, if possible.
self.processor.arguments = job_arguments
if code:
if is_pipeline_variable(code):
raise ValueError(
"code argument has to be a valid S3 URI or local file path "
+ "rather than a pipeline variable"
)
warnings.warn(
(
'We are deprecating the instantiation of ProcessingStep using "processor".'
'Instead, simply using "step_args".'
),
DeprecationWarning,
)
@property
def arguments(self) -> RequestType:
"""The arguments dictionary that is used to call `create_processing_job`.
NOTE: The `CreateProcessingJob` request is not quite the args list that workflow needs.
`ExperimentConfig` cannot be included in the arguments.
"""
from sagemaker.workflow.utilities import execute_job_functions
from sagemaker.workflow.utilities import _pipeline_config
if self.step_args:
# execute run function with saved parameters,
# and store args in PipelineSession's _context
execute_job_functions(self.step_args)
# populate request dict with args
processor = self.step_args.func_args[0]
request_dict = processor.sagemaker_session.context.args
else:
normalized_inputs, normalized_outputs = self.processor._normalize_args(
job_name=self.job_name,
arguments=self.job_arguments,
inputs=self.inputs,
outputs=self.outputs,
code=self.code,
kms_key=self.kms_key,
)
process_args = ProcessingJob._get_process_args(
self.processor, normalized_inputs, normalized_outputs, experiment_config=dict()
)
request_dict = self.processor.sagemaker_session._get_process_request(**process_args)
# Continue to pop job name if not explicitly opted-in via config
request_dict = trim_request_dict(request_dict, "ProcessingJobName", _pipeline_config)
Step._trim_experiment_config(request_dict)
return request_dict
@property
def properties(self):
"""A `Properties` object representing the `DescribeProcessingJobResponse` data model."""
return self._properties
def to_request(self) -> RequestType:
"""Get the request structure for workflow service calls."""
request_dict = super(ProcessingStep, self).to_request()
if self.cache_config:
request_dict.update(self.cache_config.config)
if self.property_files:
request_dict["PropertyFiles"] = [
property_file.expr for property_file in self.property_files
]
return request_dict
def _generate_code_upload_path(self) -> str:
"""Generate an upload path for local processing scripts based on its contents."""
from sagemaker.workflow.utilities import hash_file
code_hash = hash_file(self.code)
return f"{self.name}-{code_hash}"[:1024]
class TuningStep(ConfigurableRetryStep):
"""`TuningStep` for SageMaker Pipelines Workflows."""
def __init__(
self,
name: str,
step_args: Optional[_JobStepArguments] = None,
tuner: Optional[HyperparameterTuner] = None,
display_name: Optional[str] = None,
description: Optional[str] = None,
inputs=None,
job_arguments: Optional[List[str]] = None,
cache_config: Optional[CacheConfig] = None,
depends_on: Optional[List[Union[str, Step, "StepCollection"]]] = None,
retry_policies: Optional[List[RetryPolicy]] = None,
):
"""Construct a `TuningStep`, given a `HyperparameterTuner` instance.
In addition to the `HyperparameterTuner` instance, the other arguments are those
that are supplied to the `fit` method of the `sagemaker.tuner.HyperparameterTuner`.
Args:
name (str): The name of the `TuningStep`.
step_args (_JobStepArguments): The arguments for the `TuningStep` definition.
tuner (HyperparameterTuner): A `sagemaker.tuner.HyperparameterTuner` instance.
display_name (str): The display name of the `TuningStep`.
description (str): The description of the `TuningStep`.
inputs: Information about the training data. Please refer to the
`fit()` method of the associated estimator, as this can take
any of the following forms:
* (str) - The S3 location where training data is saved.
* (dict[str, str] or dict[str, sagemaker.inputs.TrainingInput]) -
If using multiple channels for training data, you can specify
a dictionary mapping channel names to strings or
:func:`~sagemaker.inputs.TrainingInput` objects.
* (sagemaker.inputs.TrainingInput) - Channel configuration for S3 data sources
that can provide additional information about the training dataset.
See :func:`sagemaker.inputs.TrainingInput` for full details.
* (sagemaker.session.FileSystemInput) - channel configuration for
a file system data source that can provide additional information as well as
the path to the training dataset.
* (sagemaker.amazon.amazon_estimator.RecordSet) - A collection of
Amazon :class:~`Record` objects serialized and stored in S3.
For use with an estimator for an Amazon algorithm.
* (sagemaker.amazon.amazon_estimator.FileSystemRecordSet) -
Amazon SageMaker channel configuration for a file system data source for
Amazon algorithms.
* (list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of
:class:~`sagemaker.amazon.amazon_estimator.RecordSet` objects,
where each instance is a different channel of training data.
* (list[sagemaker.amazon.amazon_estimator.FileSystemRecordSet]) - A list of
:class:~`sagemaker.amazon.amazon_estimator.FileSystemRecordSet` objects,
where each instance is a different channel of training data.
job_arguments (List[str]): A list of strings to be passed into the processing job.
Defaults to `None`.
cache_config (CacheConfig): A `sagemaker.workflow.steps.CacheConfig` instance.
depends_on (List[Union[str, Step, StepCollection]]): A list of `Step`/`StepCollection`
names or `Step` instances or `StepCollection` instances that this `TuningStep`
depends on.
retry_policies (List[RetryPolicy]): A list of retry policies.
"""
super(TuningStep, self).__init__(
name, StepTypeEnum.TUNING, display_name, description, depends_on, retry_policies
)