Skip to content

Files

Latest commit

 

History

History
 
 

rl

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Colab for the RL tutorial at EEML 2020

Designed for educational purposes. Please do not distribute without explicit permission.

The tutorial covers a number of important reinforcement learning (RL) algorithms, including policy iteration, Q-Learning, and Neural Fitted Q. In the first part, we will guide you through the general interaction between RL agents and environments, where the agents ought to take actions in order to maximize returns (i.e. cumulative reward). Next, we will implement Policy Iteration, SARSA, and Q-Learning for a simple tabular environment. The core ideas in the latter will be scaled to more complex MDPs through the use of function approximation. Lastly, we will provide a short introduction to deep reinforcement learning and the DQN algorithm.