-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
146 lines (122 loc) · 6.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# gym specific, we simply do a copy paste of what we did in the previous cells, wrapping it in the
# MyEnv class, and train a Proximal Policy Optimisation based agent
import os
import ray
import logging
import wandb
import argparse
import yaml
import random
import numpy as np
import torch
import pickle
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.typing import Dict, TensorType, List, ModelConfigDict
from ray.rllib.agents import ppo, sac # import the type of agents
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.utils.typing import Dict, TensorType, List, ModelConfigDict
from ray import tune
from ray.tune.registry import register_env
from ray.tune.integration.wandb import WandbLoggerCallback
from ray.tune.logger import TBXLogger
from ray.tune import CLIReporter
from ray.tune.stopper import CombinedStopper, MaximumIterationStopper
from dotenv import load_dotenv # security keys
from models.mlp import SimpleMlp
from grid2op_env.grid_to_gym import Grid_Gym, Grid_Gym_Greedy
from experiments.callback import CustomTBXLogger, LogDistributionsCallback
from experiments.preprocess_config import preprocess_config, get_loader
from experiments.stopper import MaxNotImprovedStopper
load_dotenv()
WANDB_API_KEY = os.environ.get("WANDB_API_KEY")
logging.basicConfig(
format='[INFO]: %(asctime)s,%(msecs)d %(levelname)-8s [%(pathname)s:%(lineno)d in \
function %(funcName)s] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
level=logging.INFO
)
LOCAL_DIR = "log_files"
if __name__ == "__main__":
random.seed(2137)
np.random.seed(2137)
torch.manual_seed(2137)
ModelCatalog.register_custom_model("fcn", SimpleMlp)
register_env("Grid_Gym", Grid_Gym)
register_env("Grid_Gym_Greedy", Grid_Gym_Greedy)
ray.shutdown()
ray.init(ignore_reinit_error=False)
parser = argparse.ArgumentParser(description="Train an agent on the Grid2Op environment")
parser.add_argument("--algorithm", type=str, default="ppo", help="Algorithm to use", choices=["ppo", "sac"])
parser.add_argument("--algorithm_config_path", type=str, default="experiments/ppo/ppo_config.yaml", \
help="Path to config file for the algorithm")
parser.add_argument("--use_tune", type=bool, default=True, help="Use Tune to train the agent")
parser.add_argument("--project_name", type=str, default="testing_callback_grid", help="Name of the to be saved in WandB")
parser.add_argument("--num_iters", type=int, default=1000, help="Number of iterations to train the agent for.")
parser.add_argument("--num_workers", type=int, default=-1, help="Number of workers to use for training.")
parser.add_argument("--num_samples", type=int, default=1, help="Number of samples to use for training.")
parser.add_argument("--checkpoint_freq", type=int, default=10, help="Number of iterations between checkpoints.")
parser.add_argument("--group" , type=str, default=None, help="Group to use for training.")
parser.add_argument("--resume", type=bool, default=False, help="Resume training from a checkpoint. If yes, group must be specified.")
parser.add_argument("--grace_period", type = int, default = 400, help = "Minimum number of timesteps before a trial can be early stopped.")
parser.add_argument("--num_iters_no_improvement", type = int, default = 200, help = "Minimum number of timesteps before a trial can be early stopped.")
parser.add_argument("--seed", type = int, default = -1, help = "Seed to use for training.")
parser.add_argument("--with_opponent", type = bool, default= -1, help = "Whether to use an opponent or not.")
args = parser.parse_args()
logging.info("Training the agent with the following parameters:")
for arg in vars(args):
logging.info(f"{arg.upper()}: {getattr(args, arg)}")
config = preprocess_config(yaml.load(open(args.algorithm_config_path), Loader=get_loader()))["tune_config"]
if args.num_workers != -1: # overwrite config if necessary
config["num_workers"] = args.num_workers
if args.seed != -1:
config["seed"] = args.seed
if args.with_opponent != -1:
config["env_config"]["with_opponent"] = True
config["evaluation_config"]["env_config"]["with_opponent"] = True
if args.algorithm == "ppo":
trainer = ppo.PPOTrainer
elif args.algorithm == "sac":
trainer = sac.SACTrainer
else:
raise ValueError("Unknown algorithm. Choices are: ppo, sac")
if args.use_tune:
# Limit the number of rows.
reporter = CLIReporter()
stopper = CombinedStopper(
MaximumIterationStopper(max_iter = args.num_iters),
# MaxNotImprovedStopper(metric = "episode_reward_mean",
# grace_period = args.grace_period,
# num_iters_no_improvement = args.num_iters_no_improvement)
)
analysis = ray.tune.run(
trainer,
progress_reporter = reporter,
config = config,
name = args.group,
local_dir= LOCAL_DIR,
checkpoint_freq=args.checkpoint_freq,
stop = stopper,
checkpoint_at_end=True,
num_samples = args.num_samples,
# callbacks=[WandbLoggerCallback(
# project=args.project_name,
# group = args.group,
# api_key = WANDB_API_KEY,
# log_config=True)],
# loggers= [CustomTBXLogger],
keep_checkpoints_num = 5,
checkpoint_score_attr="evaluation/episode_reward_mean",
verbose = 1,
resume = args.resume
)
ray.shutdown()
else: # use ray trainer directly
trainer_object = trainer(env=Grid_Gym,
config=config)
for step in range(args.num_iters):
result = trainer_object.train()
print(result["episode_len_mean"], flush = True)
if (step+1) % args.checkpoint_freq == 0:
checkpoint = trainer_object.save()
print("checkpoint saved at", checkpoint)
print("-"*40, flush = True)