-
Notifications
You must be signed in to change notification settings - Fork 491
/
Copy pathshared_cnn.py
66 lines (48 loc) · 1.62 KB
/
shared_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
from collections import defaultdict, deque
import torch as t
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from models.shared_base import *
from utils import get_logger, get_variable, keydefaultdict
logger = get_logger()
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv5x5(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride,
padding=1, bias=False)
def conv(kernel, planes):
if kernel == 3:
_conv = conv3x3
elif kernel == 5:
_conv = conv5x5
else:
raise NotImplemented(f"Unkown kernel size: {kernel}")
return nn.Sequential(
nn.ReLU(inplace=True),
_conv(planes, planes),
nn.BatchNorm2d(planes),
)
class CNN(SharedModel):
def __init__(self, args, images):
super(CNN, self).__init__()
self.args = args
self.images = images
self.w_c, self.w_h = defaultdict(dict), defaultdict(dict)
self.reset_parameters()
self.conv = defaultdict(dict)
for idx in range(args.num_blocks):
for jdx in range(idx+1, args.num_blocks):
self.conv[idx][jdx] = conv()
raise NotImplemented("In progress...")
def forward(self, inputs, dag):
pass
def get_f(self, name):
name = name.lower()
return f
def get_num_cell_parameters(self, dag):
pass
def reset_parameters(self):
pass