-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironmentConversion.cpp
170 lines (147 loc) · 5.45 KB
/
environmentConversion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include "Cubemap.h"
#include "envUtils.h"
#include "log.h"
#include "threadLines.h"
namespace envUtils {
struct EquirectangularProcessContext
{
Cubemap* dst;
const Image* src;
Cubemap::Face face;
int padding;
EquirectangularProcessContext(Cubemap* dst, Cubemap::Face face, const Image* src)
: dst(dst)
, src(src)
, face(face)
{}
};
// this part is from filament https://github.com/google/filament/blob/master/tools/cmgen/src/CubemapUtils.cpp
void equirectangularToCubemapLines(EquirectangularProcessContext context, int startY, int stopY)
{
Cubemap& dst = *context.dst;
Cubemap::Face faceIdex = context.face;
Image& face = dst.faces[faceIdex];
const Image& src = *context.src;
const int width = src.width;
const int height = src.height;
const double r = width * 0.5 * M_1_PI;
int dim = face.width;
for (int y = startY; y <= stopY; y++)
{
float3* data = &face.getPixel(0, y);
for (int x = 0; x < dim; ++x, ++data)
{
// calculate how many samples we need based on dx, dy in the source
// x = cos(phi) sin(theta)
// y = -sin(phi)
// z = -cos(phi) cos(theta)
float3 s0f;
dst.getDirectionFor(s0f.ptr(), faceIdex, x, y);
double3 s0 = s0f.toDouble();
const double t0 = atan2(s0[0], -s0[2]);
const double p0 = asin(s0[1]);
float3 s1f;
dst.getDirectionFor(s1f.ptr(), faceIdex, x + 1, y + 1);
double3 s1 = s1f.toDouble();
const double t1 = atan2(s1[0], -s1[2]);
const double p1 = asin(s1[1]);
const double dt = abs(t1 - t0);
const double dp = abs(p1 - p0);
const double dx = abs(r * dt);
const double dy = abs(r * dp * s0[1]);
const size_t numSamples = (size_t const)ceil(fmax(dx, dy));
const double iNumSamples = 1.0 / numSamples;
double3 c = double3(0, 0, 0);
for (size_t sample = 0; sample < numSamples; sample++)
{
// Generate numSamples in our destination pixels and map them to input pixels
const double2 h = hammersley(size_t(sample), iNumSamples);
float3 sf;
dst.getDirectionFor(sf.ptr(), faceIdex, float(x + h[0]), float(y + h[1]));
double3 s = sf.toDouble();
double xf = atan2(s[0], -s[2]) * M_1_PI; // range [-1.0, 1.0]
double yf = asin(-s[1]) * (2 * M_1_PI); // range [-1.0, 1.0]
xf = (xf + 1) * 0.5 * (width - 1); // range [0, width [
yf = (yf + 1) * 0.5 * (height - 1); // range [0, height[
// we can't use filterAt() here because it reads past the width/height
// which is okay for cubmaps but not for square images
int xSample = (int)xf;
int ySample = (int)yf;
xSample = xSample < width ? xSample : width - 1;
ySample = ySample < height ? ySample : height - 1;
const float3& pixel = src.getPixel(xSample, ySample);
c[0] += (double)pixel[0];
c[1] += (double)pixel[1];
c[2] += (double)pixel[2];
}
c *= iNumSamples;
float3& resultPixel = *data;
resultPixel[0] = c[0];
resultPixel[1] = c[1];
resultPixel[2] = c[2];
}
}
}
void equirectangularToCubemap(Cubemap& dst, const Image& src, int nbThread)
{
auto t = logStart("equirectangularToCubemap");
for (int f = 0; f < 6; f++)
{
EquirectangularProcessContext context(&dst, (Cubemap::Face)f, &src);
threadLines(equirectangularToCubemapLines, context, dst.size, nbThread);
}
logEnd(t);
}
struct CubemapToEquirectangularProcessContext
{
Image* dst;
const Cubemap* src;
CubemapToEquirectangularProcessContext(Image* dst, const Cubemap* src)
: dst(dst)
, src(src)
{}
};
void cubemapToEquirectangularLines(CubemapToEquirectangularProcessContext context, int startY, int stopY)
{
Image& dst = *context.dst;
const Cubemap& cubemap = *context.src;
int width = dst.width;
int height = dst.height;
float direction[3];
float u, v, theta, phi;
float PI_2 = 2.0 * M_PI;
float invWidth = 1.0 / width;
float invHeight = 1.0 / height;
float sinTheta;
Cubemap::Address address;
float x0, y0;
for (int y = startY; y <= stopY; y++)
{
v = (y + 0.5f) * invHeight;
theta = v * (float)M_PI;
float* data = dst.getPixel(0, y).ptr();
for (int x = 0; x < width; ++x, data += 3)
{
u = (x + 0.5f) * invWidth;
phi = u * PI_2;
sinTheta = sinf(theta);
direction[0] = -sinf(phi) * sinTheta;
direction[1] = cos(theta);
direction[2] = -cosf(phi) * sinTheta;
Cubemap::getAddressFor(address, direction);
const Image& image = cubemap.faces[address.face];
x0 = address.s * cubemap.size;
y0 = address.t * cubemap.size;
image.filterAt(data, x0, y0);
}
}
}
void cubemapToEquirectangular(Image& dst, const Cubemap& src, int nbThread)
{
for (int f = 0; f < 6; f++)
{
CubemapToEquirectangularProcessContext context(&dst, &src);
threadLines(cubemapToEquirectangularLines, context, dst.height, nbThread);
}
}
} // namespace envUtils