-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodeling.py
46 lines (36 loc) · 1.81 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
import numpy as np
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1], name='input_layer')
print(input_layer)
conv1 = tf.layers.conv2d(inputs=input_layer, filters=32, kernel_size=[5, 5], padding='same', activation=tf.nn.relu, name='conv1')
print(conv1)
conv2 = tf.layers.conv2d(inputs=conv1, filters=32, kernel_size=[5, 5], padding='same', activation=tf.nn.relu, name='conv2')
print(conv2)
flat = tf.layers.flatten(inputs=conv2, name='flat')
print(flat)
dense1 = tf.layers.dense(inputs=flat, units=1024, activation=tf.nn.relu, name='dense1')
print(dense1)
predict = tf.layers.dense(inputs=dense1, units=10, activation=tf.nn.softmax, name='predict')
print(predict)
predictions = {
'classes': tf.argmax(input=predict, axis=1),
'probabilities': predict}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
answer = tf.one_hot(labels, 10)
loss = tf.reduce_mean(-answer * tf.log(predict + 1e-8))
accuracy = tf.metrics.accuracy(
labels=labels, predictions=predictions['classes'])
tf.summary.scalar('loss', loss)
tf.summary.scalar('accuracy', accuracy[1])
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
eval_metric_ops = {
'accuracy': tf.metrics.accuracy(
labels=labels, predictions=predictions['classes'])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)