forked from anguyen8/generative-attribution-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLIME_test.sh
32 lines (24 loc) · 1.36 KB
/
LIME_test.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#/bin/bash
#
# Chirag Agarwal <chiragagarwall12.gmail.com>
# 2019
img_path='example.JPEG'
true_class=222
dataset='imagenet'
weight_file='./generative_inpainting/model_logs/release_imagenet_256/'
save_path='./output/'
algo_1='LIME'
# LIME
CUDA_VISIBLE_DEVICES=0 python formal_LIME_single_image.py --img_path ${img_path} --true_class ${true_class} --dataset ${dataset} --weight_file ${weight_file} --save_path ${save_path} --algo ${algo_1}
# Save figure
python formal_plot_figure.py --result_path ${save_path}/${algo_1} --dataset ${dataset} --save_path ${save_path}/${algo_1} --algo ${algo_1}
convert ${save_path}/${algo_1}/figure_${algo_1}.jpg -trim ${save_path}/${algo_1}/figure_${algo_1}.jpg
# LIME-G
algo_2='LIMEG'
CUDA_VISIBLE_DEVICES=0 python formal_LIME_single_image.py --img_path ${img_path} --true_class ${true_class} --dataset ${dataset} --weight_file ${weight_file} --save_path ${save_path} --algo ${algo_2}
# Save figure
python formal_plot_figure.py --result_path ${save_path}/${algo_2} --dataset ${dataset} --save_path ${save_path}/${algo_2} --algo ${algo_2}
convert ${save_path}/${algo_2}/figure_${algo_2}.jpg -trim ${save_path}/${algo_2}/figure_${algo_2}.jpg
# Displaying figure
montage -quiet ${save_path}/${algo_1}/figure_${algo_1}.jpg ${save_path}/${algo_2}/figure_${algo_2}.jpg -tile 1x -geometry +2+2 ${save_path}/test_LIME.jpg
imgcat ${save_path}/test_LIME.jpg