forked from anguyen8/generative-attribution-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformal_LIME_single_image.py
271 lines (206 loc) · 9.81 KB
/
formal_LIME_single_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import absolute_import
import warnings
warnings.simplefilter('ignore')
import time, os, sys, cv2, time, argparse
import torch
import random
import numpy as np
from formal_utils import *
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models, transforms
from lime import lime_image
from lime.wrappers.scikit_image import SegmentationAlgorithm
use_cuda = torch.cuda.is_available()
# Fixing for deterministic results
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_arguments():
# Initialize the parser
parser = argparse.ArgumentParser(description='Input paramters for meaningful perturbation explanation of the image')
parser.add_argument('--img_path', type=str,
help='path of the image you want to explain')
parser.add_argument('--if_pre', type=int, choices=range(2),
help='It is clear from name. Default: Post (0)', default=0,
)
parser.add_argument('--lime_background_pixel', type=int,
help='Background pixel for lime to be used for absence of super-pixel. Default=0', default=0,
)
parser.add_argument('--lime_superpixel_num', type=int,
help='Number of super pixels used by Lime. Default=50', default=50,
)
parser.add_argument('--lime_num_samples', type=int,
help='Number of samples used by Lime. Default=1000', default=500,
)
parser.add_argument('--lime_superpixel_seed', type=int,
help='Seed to create random samples for Lime. Default=0', default=0,
)
parser.add_argument('--lime_explainer_seed', type=int,
help='Seed to creating Lime explainer. Default=0', default=0,
)
parser.add_argument('--batch_size', type=int,
default=10, help='batch size')
parser.add_argument('--true_class', type=int,
default=852,
help='target class of the image you want to explain')
parser.add_argument('--save_path', type=str,
default='./',
help='filepath for the example image')
parser.add_argument('--weight_file', type=str,
default='/home/chirag/gpu3_codes/generative_inpainting_FIDO/model_logs/release_imagenet_256/',
help='path for the weight files of the inpainter model for imagenet | places365')
parser.add_argument('--dataset', type=str,
default='imagenet', help='dataset to run on imagenet | places365')
parser.add_argument('--algo', type=str,
default='LIME', help='fill using lime_background_pixel or inpaint')
# Parse the arguments
args = parser.parse_args()
return args
def load_orig_imagenet_model(arch_name='resnet50', if_pre=0):
model = models.resnet50(pretrained=True)
if if_pre == 1:
pass
else:
model = nn.Sequential(model, nn.Softmax(dim=1))
for p in model.parameters():
p.requires_grad = False
model = model.to('cuda')
model.eval()
return model
def load_orig_places365_model(arch_name='resnet50', if_pre=0): #
# load the pre-trained weights
model_file = '%s_places365.pth.tar' % arch_name
if not os.access(model_file, os.W_OK):
weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file
os.system('wget ' + weight_url)
model = models.__dict__[arch_name](num_classes=365)
checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage)
state_dict = {str.replace(k, 'module.', ''): v for k, v in checkpoint['state_dict'].items()}
model.load_state_dict(state_dict)
if if_pre == 1:
pass
else:
model = nn.Sequential(model, nn.Softmax(dim=1))
for p in model.parameters():
p.requires_grad = False
model = model.to('cuda')
model.eval()
return model
def get_pytorch_preprocess_transform():
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transf = transforms.Compose([
transforms.ToTensor(),
normalize
])
return transf
def get_pil_transform():
transf = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224)
])
return transf
def get_image(path):
with open(os.path.abspath(path), 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
if __name__ == '__main__':
s_time = time.time()
f_time = ''.join(str(s_time).split('.'))
args = get_arguments()
if args.dataset == 'imagenet':
pytorch_model = load_orig_imagenet_model(arch_name='resnet50')
# load the class label
label_map = load_imagenet_label_map()
elif args.dataset == 'places365':
pytorch_model = load_orig_places365_model(arch_name='resnet50')
# load the class label
label_map = load_class_label()
else:
print('Invalid datasest!!')
exit(0)
pytorch_explainer = lime_image.LimeImageExplainer(random_state=args.lime_explainer_seed)
slic_parameters = {'n_segments': args.lime_superpixel_num, 'compactness': 30, 'sigma': 3}
segmenter = SegmentationAlgorithm('slic', **slic_parameters)
pill_transf = get_pil_transform()
#########################################################
# Function to compute probabilities
# Pytorch
pytorch_preprocess_transform = get_pytorch_preprocess_transform()
def pytorch_batch_predict(images):
batch = torch.stack(tuple(pytorch_preprocess_transform(i) for i in images), dim=0)
batch = batch.to('cuda')
if args.if_pre == 1:
logits = pytorch_model(batch)
probs = F.softmax(logits, dim=1)
else:
probs = pytorch_model(batch)
return probs
# Initialize CA-inpainter only for LIMEG
if args.algo == 'LIMEG':
# Generative ImageNet Contextual Attention (TENSORFLOW)
sys.path.insert(0, './generative_inpainting/')
from CAInpainter import CAInpainter
inpaint_model = CAInpainter(args.batch_size,
checkpoint_dir=args.weight_file)
inpaint_model.eval()
else:
inpaint_model = pytorch_model
# Preprocess transform
pytorch_preprocessFn = transforms.Compose([transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
random.seed(0)
init_time = time.time()
# This image will be passed to Lime Explainer
img = get_image(args.img_path)
pytorch_img = pytorch_preprocessFn(Image.open(args.img_path).convert('RGB')).to('cuda').unsqueeze(0)
outputs = pytorch_model(pytorch_img)
if args.dataset == 'imagenet':
true_class = args.true_class
top_labels = 1
labels = (true_class,)
elif args.dataset == 'places365':
true_class = args.true_class
top_labels = 5
labels = (true_class, )
# LIME analysis
# save_dir
save_path = os.path.join(args.save_path, '{}'.format(args.algo), '{}'.format(args.dataset))
mkdir_p(save_path)
# save path for intermediate steps
save_intermediate = os.path.join(save_path, 'intermediate_steps')
mkdir_p(save_intermediate)
lime_img = np.array(pill_transf(img))
t1 = time.time()
pytorch_lime_explanation = pytorch_explainer.explain_instance(lime_img, pytorch_img, inpaint_model,
pytorch_batch_predict,
batch_size=args.batch_size,
segmentation_fn=segmenter,
top_labels=None, labels=labels,
hide_color=None,
num_samples=args.lime_num_samples,
random_seed=args.lime_superpixel_seed,
fill_type=args.algo,
num_super_pixel=args.lime_superpixel_num,
sav_path=save_intermediate,
target_category=true_class, l_map=label_map)
pytorch_segments = pytorch_lime_explanation.segments
pytorch_heatmap = np.zeros(pytorch_segments.shape)
local_exp = pytorch_lime_explanation.local_exp
exp = local_exp[true_class]
for i, (seg_idx, seg_val) in enumerate(exp):
pytorch_heatmap[pytorch_segments == seg_idx] = seg_val
# print('Time taken: {:.3f} secs'.format(time.time()-init_time))
# SAVE raw numpy values
np.save(os.path.abspath(os.path.join(save_path, "mask_{}.npy".format(args.algo))), pytorch_heatmap)
# Compute original output
org_softmax = pytorch_model(pytorch_img)
eval0 = org_softmax.data[0, true_class]
pill_transf = get_pil_transform()
cv2.imwrite(os.path.abspath(os.path.join(save_path, 'real_{}_{:.3f}_image.jpg'
.format(label_map[true_class].split(',')[0].split(' ')[0].split('-')[0], eval0))),
cv2.cvtColor(np.array(pill_transf(get_image(args.img_path))), cv2.COLOR_BGR2RGB))