-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
141 lines (122 loc) · 4.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import json
import numpy as np
import pandas as pd
from dypro.dynamic import NormalMeanVarChart, NormalMeanSChart, NormalMeanRChart
from dypro.config import Parameters, AdjConf, PlotConf
from dypro.create_csv import (
create_proposed_cpk,
created_proposed_yeild,
create_previous_cpk,
)
from dypro.dynamic.optimize import BrenthOptimizer
from dypro.plot import PlotGraph
from dypro._decorator import RunTime
CHART_LIST = [NormalMeanVarChart(), NormalMeanSChart(), NormalMeanRChart()]
CHART_NAME = ["v", "s", "r"]
FIGNAME = [
"$S^2$ control chart",
"$S$ control chart",
"$R$ control chart",
]
K2_DIR = ["csv/v_k2.csv", "csv/s_k2.csv", "csv/r_k2.csv"]
SUBGROUP_SIZE = [5, 10, 15, 20]
N = 5
FIGSIZE = (9, 6)
@RunTime()
def main():
# load config
with open("conf.json") as f:
conf = json.load(f)
# create instance object for config
param = Parameters(**conf["parameters"])
adj_conf = AdjConf(
n=np.arange(2, conf["n_max"] + 1),
k1=np.arange(0, conf["k1_max"] + conf["k1_num"], conf["k1_num"]),
)
for chart, k2_dir, chartname, figname in zip(
CHART_LIST, K2_DIR, CHART_NAME, FIGNAME
):
# optimizer
optimizer = BrenthOptimizer(chart, power=conf["power"])
# read k2 table
k2_df = pd.read_csv(k2_dir)
# setting plot_conf
plot_conf = PlotConf(k2_df=k2_df, figsize=FIGSIZE, dpi=conf["dpi"])
################
# create table #
################
# proposed cpk table
proposed_df = create_proposed_cpk(chart=chart, k2_df=k2_df, param=param)
proposed_df.to_csv(f"csv/proposed_cpk_{chartname}.csv", index=False)
# previous
pre_df = create_previous_cpk(
chart=chart, optimizer=optimizer, k2_df=k2_df, param=param
)
pre_df.to_csv(f"csv/previous_cpk_{chartname}.csv", index=False)
# yeild table
yeild_df = created_proposed_yeild(
proposed_csv=proposed_df, optimizer=optimizer, k2_df=k2_df, param=param
)
yeild_df.to_csv(f"csv/yeild_{chartname}.csv", index=False)
###########################################
# plot 2D result with specific parameters #
###########################################
bothe_k1 = np.array(optimizer.get_mean_adjustment(adj_conf.n))
pearn_k2 = np.array(
[optimizer.get_var_adjustment(n) for n in adj_conf.n]
).flatten()
plotter = PlotGraph(
chart=chart,
proposed_df=proposed_df,
param=param,
adj_conf=adj_conf,
plot_conf=plot_conf,
bothe_k1=bothe_k1,
pearn_k2=pearn_k2,
figname=figname,
)
plotter.plot_k2(
["0.2", "0.3", "0.4", "0.5"], save_path=f"fig/k2_{chartname}.png"
)
plotter.cpk(save_path=f"fig/cpk_comparison_{chartname}.png")
plotter.ncppm(save_path=f"fig/ncppm_comparison_{chartname}.png")
plotter.k1_power(
subgroup_size=SUBGROUP_SIZE,
save_path=f"fig/k1_power_{chartname}.png",
k1_max=3,
)
plotter.k2_power(
subgroup_size=SUBGROUP_SIZE,
save_path=f"fig/k2_power_{chartname}.png",
k2_max=3,
)
plotter.k1_k2_power(
n=5, save_path=f"fig/k1_k2_power_{chartname}.png", k1_max=3, k2_max=3
)
################
# plot surface #
################
plotter.plot_cpk_surface(
save_path=f"fig/cpk_surface_n=30_{chartname}.png",
)
plotter.plot_cpk_surface(
save_path=f"fig/cpk_surface_add_power_line_n=30_{chartname}.png",
add_power_line=True,
alpha=0.5,
n=30,
)
if chartname != "r":
plotter.plot_power_surface(
save_path=f"fig/power_surface_n={N}_{chartname}.png", n=N
)
plotter.plot_power_surface(
save_path=f"fig/power_surface_add_power_line_n={N}_{chartname}.png",
add_power_line=True,
alpha=0.5,
n=N,
)
plotter.plot_power_contourf(
save_path=f"fig/power_contourf_n={N}_{chartname}.png", n=N
)
if __name__ == "__main__":
main()