-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathkfs_dyn.m
178 lines (138 loc) · 5.17 KB
/
kfs_dyn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function [xf,xs,L,MP0,Mx0,sum_MCP,sum_MP,sum_MPb,sum_P] = ...
kfs_dyn(y,M,p,r,pars,S,safe,abstol,reltol)
A = pars.A; C = pars.C; Q = pars.Q; R = pars.R; mu = pars.mu;
Sigma = pars.Sigma;
% Model dimensions
[N,T] = size(y);
% Size of 'small' state vector x(t): r
% Size of 'big' state vector X(t) = (x(t),...,x(t-p+1)): p * r
% To remove warnings when inverting singular matrices
warning('off','MATLAB:singularMatrix');
warning('off','MATLAB:illConditionedMatrix');
% Declaring Kalman filter variables
xp = zeros(r,T); % E(x(t)|y(1:t-1),S(t-1)=i,S(t)=j)
Vp = zeros(r,r,T); % V(x(t)|y(1:t-1),S(t-1)=i)
xf = zeros(p*r,T); % E(x(t)|y(1:t))
Vf = zeros(p*r,p*r,T); % V(x(t)|y(1:t),S(t-1)=i,S(t)=j)
% Declaring Kalman smoothing variables
xs = zeros(r,T); % E(x(t)|y(1:T))
% Vst = zeros(p*r,p*r); % V(X(t)|y(1:T))
% CVst = zeros(r,p*r); % Cov(x(t+1),X(t)|y(1:T))
% Other outputs
sum_MCP = zeros(r,p*r,M); % sum(t=2:T,S(t)=j) E(x(t)X(t-1)'|y(1:T))
sum_MP = zeros(r,r,M); % sum(t=2:T,S(t)=j) E(x(t)x(t)'|y(1:T))
sum_MPb = zeros(p*r,p*r,M); % sum(t=2:T,S(t)=j) E(X(t-1)X(t-1)'|y(1:T))
% sum_P = zeros(r,r) % sum(t=1:T) E(x(t)x(t)'|y(1:T))
MP0 = zeros(p*r,p*r,M); % P(S(1)=j|y(1:T)) * E(X(1)X(1)'|y(1:T))
Mx0 = zeros(p*r,M); % P(S(1)=j|y(1:T)) * E(X(1)|y(1:T))
% Log-likelihood
L = zeros(1,T);
% Constant for likelihood calculation
cst = - N/2 * log(2*pi);
% Expand matrices
Abig = repmat(diag(ones((p-1)*r,1),-r),[1,1,M]);
Abig(1:r,:,:) = A;
Cbig = zeros(N,p*r);
Cbig(:,1:r) = C;
Qbig = zeros(p*r,p*r,M);
Qbig(1:r,1:r,:) = Q;
%-------------------------------------------------------------------------%
% Switching Kalman Filter %
%-------------------------------------------------------------------------%
% MAIN LOOP
for t=1:T
St = S(t);
% Prediction of x(t)
if t == 1
xpt = repmat(mu(:,St),p,1);
Vpt = kron(eye(p),Sigma(:,:,St));
else
xpt = Abig(:,:,St) * xf(:,t-1);
Vpt = Abig(:,:,St) * Vf(:,:,t-1) * Abig(:,:,St).' + Qbig(:,:,St);
end
% Store predictions
xp(:,t) = xpt(1:r);
Vp(:,:,t) = Vpt(1:r,1:r);
% Prediction error for y(t)
e = y(:,t) - C * xpt(1:r);
Ve = C * Vpt(1:r,1:r) * C.' + R; % Variance of prediction error
% Ve = 0.5 * (Ve+Ve.');
% Check that variance matrix is positive definite and well-conditioned
if safe
Ve = regfun(Ve,abstol,reltol);
end
% % Filtering update
% CVp = C * Vpt;
% K = (CVp.') / Ve; % Kalman gain matrix
% xf(:,t) = xpt + K * e; % E(X(t)|S(t-1)=i,S(t)=j,y(1:t))
% Vf(:,:,t) = Vpt - K * CVp; % V(X(t)|S(t-1)=i,S(t)=j,y(1:t))
% if t == T
% % Cov(x(t),x(t-1)|S(t-1)=i,S(t)=j,y(1:t))
% CVf = (I - K*C) * A(:,:,j) * Vf(:,:,t-1);
% end
[Lchol,err] = chol(Ve,'lower');
if ~err % case: Ve definite positive
LinvCVp = (Lchol\Cbig) * Vpt;
Linve = Lchol\e;
% Log-Likelihood
L(t) = cst - sum(log(diag(Lchol))) - 0.5 * sum(Linve.^2);
% Filtering update
xf(:,t) = xpt + LinvCVp.' * Linve; % E(X(t)|S(t-1)=i,S(t)=j,y(1:t))
Vf(:,:,t) = Vpt - (LinvCVp.' * LinvCVp); % V(X(t)|S(t-1)=i,S(t)=j,y(1:t))
else
L(t) = -Inf;
xf(:,t) = xpt;
Vf(:,:,t) = Vpt;
end
end % end t loop
idx = isinf(L);
if any(idx)
L(idx) = min(L(~idx)) + log(eps);
end
L = sum(L);
%-------------------------------------------------------------------------%
% Switching Kalman Smoother %
%-------------------------------------------------------------------------%
% Initialize smoother at time T
xs(:,T) = xf(1:r,T);
Vst = Vf(:,:,T);
St = S(T);
sum_MP(:,:,St) = (Vst(1:r,1:r) + (xs(:,T) * xs(:,T).'));
for t = T-1:-1:1
% Store relevant vectors/matrices from previous iteration
Vstp1 = Vst(1:r,1:r); % V(x(t+1)|S(t+1),y(1:T))
% Shorthand
St = S(t);
Stp1 = S(t+1);
% Smoothed mean and variance of x(t), smoothed cross-covariance of
% x(t+1) & X(t) given S(t)=j and S(t+1)=k
% Kalman smoother gain
% J(t) = V(X(t)|S(t)=j,y(1:t)) * A_k' * V(x(t+1)|S(t)=j,y(1:t))^{-1}
J = Vf(:,:,t) * A(:,:,Stp1).' / Vp(:,:,t+1);
if any(isnan(J(:))) || any(isinf(J(:)))
J = Vf(:,:,t) * A(:,:,Stp1).' * pinv(Vp(:,:,t+1));
end
% E(X(t)|y(1:T))
xst = xf(:,t) + J * (xs(:,t+1) - xp(:,t+1));
xs(:,t) = xst(1:r);
% V(X(t)|y(1:T))
Vst = Vf(:,:,t) + J * (Vstp1 - Vp(:,:,t+1)) * J.';
% Cov(x(t+1),X(t)|y(1:T)) = V(x(t+1)|y(1:T)) * J(t)'
% Equation (20) of "Derivation of Kalman filtering and smoothing equations"
% by B. M. Yu, K. V. Shenoy, M. Sahani. Technical report, 2004.
CVst = Vstp1 * J.';
% Required quantities for M step
% E(X(t)X(t)'|y(1:T))
P = Vst + (xst * xst.');
% E(x(t+1)X(t)'|y(1:T))
CP = CVst(1:r,:) + xs(1:r,t+1) * xst.';
if t > 1
sum_MP(:,:,St) = sum_MP(:,:,St) + P(1:r,1:r);
end
sum_MPb(:,:,Stp1) = sum_MPb(:,:,Stp1) + P;
sum_MCP(:,:,Stp1) = sum_MCP(:,:,Stp1) + CP;
end % end t loop
Mx0(:,S(1)) = xst;
MP0(:,:,S(1)) = P;
sum_P = sum(sum_MP,3) + P(1:r,1:r);
xf = xf(1:r,:);