-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
91 lines (72 loc) · 2.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import h5py
import numpy as np
import math
import cv2
import os
import errno
BASE_PATH = os.path.dirname(os.path.realpath(__file__))
CSV_PATH_DS1 = u'{}/data/ds1'.format(BASE_PATH)
CSV_PATH_DS2 = u'{}/data/ds2'.format(BASE_PATH)
CSV_PATH_DS3 = u'{}/data/ds3'.format(BASE_PATH)
IMG_PATH_DS1 = u'{}/data/ds1/img'.format(BASE_PATH)
IMG_PATH_DS2 = u'{}/data/ds2/img'.format(BASE_PATH)
IMG_PATH_DS3 = u'{}/data/ds3/img'.format(BASE_PATH)
HDF5_PATH_DS1 = u'{}/data/hdf5/ds1'.format(BASE_PATH)
HDF5_PATH_DS2 = u'{}/data/hdf5/ds2'.format(BASE_PATH)
HDF5_PATH_DS3 = u'{}/data/hdf5/ds3'.format(BASE_PATH)
RADAR_PATH = u'{}/data/radar'.format(BASE_PATH)
MODEL_PATH = u'{}/models'.format(BASE_PATH)
MOVED_FILES_PATH = u'{}/data/handbrake_reverse_images'.format(BASE_PATH)
IMAGE_DIM = (160, 70) #changed from (320, 70)
def load_dataset(file_name):
hdf5_path = '{}'.format(file_name)
hdf5_file = h5py.File(hdf5_path, 'r')
data_X = np.array(hdf5_file['data'][:])
data_Y = np.array(hdf5_file['label'][:])
return data_X, data_Y
def load_multi_dataset(txt_name):
data_X, data_Y = None, None
try:
with open(txt_name, 'r') as f:
for line in f:
line = line.rstrip()
x, y = load_dataset(line)
if data_X is None or data_Y is None:
data_X, data_Y = x, y
else:
data_X = np.concatenate((data_X, x))
data_Y = np.concatenate((data_Y, y))
except FileNotFoundError as e:
print(e)
return data_X, data_Y
return data_X, data_Y
def random_mini_batches(X, Y, mini_batch_size=64, seed=0):
m = X.shape[0]
mini_batches = []
np.random.seed(seed)
permutation = list(np.random.permutation(m))
shuffled_X = X[permutation,:,:,:]
shuffled_Y = Y[permutation,:]
num_complete_minibatches = int(math.floor(m/mini_batch_size))
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:,:,:]
mini_batch_Y = shuffled_Y[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size : m,:,:,:]
mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size : m,:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
print('Directory is ready: {}'.format(path))
if __name__ == '__main__':
load_multi_dataset('hdf5/train_h5_list.txt')