-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMGC.py
637 lines (548 loc) · 19.4 KB
/
MGC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# License: BSD 3-clause
# Authors: Kyle Kastner
# LTSD routine from jfsantos (Joao Felipe Santos)
# Harvest, Cheaptrick, D4C, WORLD routines based on MATLAB code from M. Morise
# http://ml.cs.yamanashi.ac.jp/world/english/
# MGC code based on r9y9 (Ryuichi Yamamoto) MelGeneralizedCepstrums.jl
# Pieces also adapted from SPTK
from __future__ import division
import numpy as np
from scipy.cluster.vq import vq
from scipy.interpolate import interp1d
from numpy.lib.stride_tricks import as_strided
from scipy import linalg, fftpack
from numpy.testing import assert_almost_equal
from scipy.linalg import svd
from scipy.io import wavfile
from scipy.signal import firwin
from multiprocessing import Pool
from PIL import Image
try:
import urllib.request as urllib # for backwards compatibility
except ImportError:
import urllib2 as urllib
def _mgc_b2c(wc, c, alpha):
wc_o = np.zeros_like(wc)
desired_order = len(wc) - 1
for i in range(0, len(c))[::-1]:
prev = copy.copy(wc_o)
wc_o[0] = c[i]
if desired_order >= 1:
wc_o[1] = (1. - alpha ** 2) * prev[0] + alpha * prev[1]
for m in range(2, desired_order + 1):
wc_o[m] = prev[m - 1] + alpha * (prev[m] - wc_o[m - 1])
return wc_o
def _mgc_ptrans(p, m, alpha):
d = 0.
o = 0.
d = p[m]
for i in range(1, m)[::-1]:
o = p[i] + alpha * d
d = p[i]
p[i] = o
o = alpha * d
p[0] = (1. - alpha ** 2) * p[0] + 2 * o
def _mgc_qtrans(q, m, alpha):
d = q[1]
for i in range(2, 2 * m + 1):
o = q[i] + alpha * d
d = q[i]
q[i] = o
def _mgc_gain(er, c, m, g):
t = 0.
if g != 0:
for i in range(1, m + 1):
t += er[i] * c[i]
return er[0] + g * t
else:
return er[0]
def _mgc_fill_toeplitz(A, t):
n = len(t)
for i in range(n):
for j in range(n):
A[i, j] = t[i - j] if i - j >= 0 else t[j - i]
def _mgc_fill_hankel(A, t):
n = len(t) // 2 + 1
for i in range(n):
for j in range(n):
A[i, j] = t[i + j]
def _mgc_ignorm(c, gamma):
if gamma == 0.:
c[0] = np.log(c[0])
return c
gain = c[0] ** gamma
c[1:] *= gain
c[0] = (gain - 1.) / gamma
def _mgc_gnorm(c, gamma):
if gamma == 0.:
c[0] = np.exp(c[0])
return c
gain = 1. + gamma * c[0]
c[1:] /= gain
c[0] = gain ** (1. / gamma)
def _mgc_b2mc(mc, alpha):
m = len(mc)
o = 0.
d = mc[m - 1]
for i in range(m - 1)[::-1]:
o = mc[i] + alpha * d
d = mc[i]
mc[i] = o
def _mgc_mc2b(mc, alpha):
itr = range(len(mc) - 1)[::-1]
for i in itr:
mc[i] = mc[i] - alpha * mc[i + 1]
def _mgc_gc2gc(src_ceps, src_gamma=0., dst_order=None, dst_gamma=0.):
if dst_order == None:
dst_order = len(src_ceps) - 1
dst_ceps = np.zeros((dst_order + 1,), dtype=src_ceps.dtype)
dst_order = len(dst_ceps) - 1
m1 = len(src_ceps) - 1
dst_ceps[0] = copy.deepcopy(src_ceps[0])
for m in range(2, dst_order + 2):
ss1 = 0.
ss2 = 0.
min_1 = m1 if (m1 < m - 1) else m - 2
itr = range(2, min_1 + 2)
if len(itr) < 1:
if min_1 + 1 == 2:
itr = [2]
else:
itr = []
"""
# old slower version
for k in itr:
assert k >= 1
assert (m - k) >= 0
cc = src_ceps[k - 1] * dst_ceps[m - k]
ss2 += (k - 1) * cc
ss1 += (m - k) * cc
"""
if len(itr) > 0:
itr = np.array(itr)
cc_a = src_ceps[itr - 1] * dst_ceps[m - itr]
ss2 += ((itr - 1) * cc_a).sum()
ss1 += ((m - itr) * cc_a).sum()
if m <= m1 + 1:
dst_ceps[m - 1] = src_ceps[m - 1] + (dst_gamma * ss2 - src_gamma * ss1)/(m - 1.)
else:
dst_ceps[m - 1] = (dst_gamma * ss2 - src_gamma * ss1) / (m - 1.)
return dst_ceps
def _mgc_newton(mgc_stored, periodogram, order, alpha, gamma,
recursion_order, iter_number, y_fft, z_fft, cr, pr, rr, ri,
qr, qi, Tm, Hm, Tm_plus_Hm, b):
# a lot of inplace operations to match the Julia code
cr[1:order + 1] = mgc_stored[1:order + 1]
if alpha != 0:
cr_res = _mgc_b2c(cr[:recursion_order + 1], cr[:order + 1], -alpha)
cr[:recursion_order + 1] = cr_res[:]
y = sp.fftpack.fft(np.cast["float64"](cr))
c = mgc_stored
x = periodogram
if gamma != 0.:
gamma_inv = 1. / gamma
else:
gamma_inv = np.inf
if gamma == -1.:
pr[:] = copy.deepcopy(x)
new_pr = copy.deepcopy(pr)
elif gamma == 0.:
pr[:] = copy.deepcopy(x) / np.exp(2 * np.real(y))
new_pr = copy.deepcopy(pr)
else:
tr = 1. + gamma * np.real(y)
ti = -gamma * np.imag(y)
trr = tr * tr
tii = ti * ti
s = trr + tii
t = x * np.power(s, (-gamma_inv))
t /= s
pr[:] = t
rr[:] = tr * t
ri[:] = ti * t
t /= s
qr[:] = (trr - tii) * t
s = tr * ti * t
qi[:] = (s + s)
new_pr = copy.deepcopy(pr)
if gamma != -1.:
"""
print()
print(pr.sum())
print(rr.sum())
print(ri.sum())
print(qr.sum())
print(qi.sum())
print()
"""
pass
y_fft[:] = copy.deepcopy(pr) + 0.j
z_fft[:] = np.fft.fft(y_fft) / len(y_fft)
pr[:] = copy.deepcopy(np.real(z_fft))
if alpha != 0.:
idx_1 = pr[:2 * order + 1]
idx_2 = pr[:recursion_order + 1]
idx_3 = _mgc_b2c(idx_1, idx_2, alpha)
pr[:2 * order + 1] = idx_3[:]
if gamma == 0. or gamma == -1.:
qr[:2 * order + 1] = pr[:2 * order + 1]
rr[:order + 1] = copy.deepcopy(pr[:order + 1])
else:
for i in range(len(qr)):
y_fft[i] = qr[i] + 1j * qi[i]
z_fft[:] = np.fft.fft(y_fft) / len(y_fft)
qr[:] = np.real(z_fft)
for i in range(len(rr)):
y_fft[i] = rr[i] + 1j * ri[i]
z_fft[:] = np.fft.fft(y_fft) / len(y_fft)
rr[:] = np.real(z_fft)
if alpha != 0.:
qr_new = _mgc_b2c(qr[:recursion_order + 1], qr[:recursion_order + 1], alpha)
qr[:recursion_order + 1] = qr_new[:]
rr_new = _mgc_b2c(rr[:order + 1], rr[:recursion_order + 1], alpha)
rr[:order + 1] = rr_new[:]
if alpha != 0:
_mgc_ptrans(pr, order, alpha)
_mgc_qtrans(qr, order, alpha)
eta = 0.
if gamma != -1.:
eta = _mgc_gain(rr, c, order, gamma)
c[0] = np.sqrt(eta)
if gamma == -1.:
qr[:] = 0.
elif gamma != 0.:
for i in range(2, 2 * order + 1):
qr[i] *= 1. + gamma
te = pr[:order]
_mgc_fill_toeplitz(Tm, te)
he = qr[2: 2 * order + 1]
_mgc_fill_hankel(Hm, he)
Tm_plus_Hm[:] = Hm[:] + Tm[:]
b[:order] = rr[1:order + 1]
res = np.linalg.solve(Tm_plus_Hm, b)
b[:] = res[:]
c[1:order + 1] += res[:order]
if gamma == -1.:
eta = _mgc_gain(rr, c, order, gamma)
c[0] = np.sqrt(eta)
return np.log(eta), new_pr
def _mgc_mgcepnorm(b_gamma, alpha, gamma, otype):
if otype != 0:
raise ValueError("Not yet implemented for otype != 0")
mgc = copy.deepcopy(b_gamma)
_mgc_ignorm(mgc, gamma)
_mgc_b2mc(mgc, alpha)
return mgc
def _sp2mgc(sp, order=20, alpha=0.35, gamma=-0.41, miniter=2, maxiter=30, criteria=0.001, otype=0, verbose=False):
# Based on r9y9 Julia code
# https://github.com/r9y9/MelGeneralizedCepstrums.jl
periodogram = np.abs(sp) ** 2
recursion_order = len(periodogram) - 1
slen = len(periodogram)
iter_number = 1
def _z():
return np.zeros((slen,), dtype="float64")
def _o():
return np.zeros((order,), dtype="float64")
def _o2():
return np.zeros((order, order), dtype="float64")
cr = _z()
pr = _z()
rr = _z()
ri = _z().astype("float128")
qr = _z()
qi = _z().astype("float128")
Tm = _o2()
Hm = _o2()
Tm_plus_Hm = _o2()
b = _o()
y = _z() + 0j
z = _z() + 0j
b_gamma = np.zeros((order + 1,), dtype="float64")
# return pr_new due to oddness with Julia having different numbers
# in pr at end of function vs back in this scope
eta0, pr_new = _mgc_newton(b_gamma, periodogram, order, alpha, -1.,
recursion_order, iter_number, y, z, cr, pr, rr,
ri, qr, qi, Tm, Hm, Tm_plus_Hm, b)
pr[:] = pr_new
"""
print(eta0)
print(sum(b_gamma))
print(sum(periodogram))
print(order)
print(alpha)
print(recursion_order)
print(sum(y))
print(sum(cr))
print(sum(z))
print(sum(pr))
print(sum(rr))
print(sum(qi))
print(Tm.sum())
print(Hm.sum())
print(sum(b))
raise ValueError()
"""
if gamma != -1.:
d = np.zeros((order + 1,), dtype="float64")
if alpha != 0.:
_mgc_ignorm(b_gamma, -1.)
_mgc_b2mc(b_gamma, alpha)
d = copy.deepcopy(b_gamma)
_mgc_gnorm(d, -1.)
# numbers are slightly different here - numerical diffs?
else:
d = copy.deepcopy(b_gamma)
b_gamma = _mgc_gc2gc(d, -1., order, gamma)
if alpha != 0.:
_mgc_ignorm(b_gamma, gamma)
_mgc_mc2b(b_gamma, alpha)
_mgc_gnorm(b_gamma, gamma)
if gamma != -1.:
eta_t = eta0
for i in range(1, maxiter + 1):
eta, pr_new = _mgc_newton(b_gamma, periodogram, order, alpha,
gamma, recursion_order, i, y, z, cr, pr, rr,
ri, qr, qi, Tm, Hm, Tm_plus_Hm, b)
pr[:] = pr_new
"""
print(eta0)
print(sum(b_gamma))
print(sum(periodogram))
print(order)
print(alpha)
print(recursion_order)
print(sum(y))
print(sum(cr))
print(sum(z))
print(sum(pr))
print(sum(rr))
print(sum(qi))
print(Tm.sum())
print(Hm.sum())
print(sum(b))
raise ValueError()
"""
err = np.abs((eta_t - eta) / eta)
if verbose:
print("iter %i, criterion: %f" % (i, err))
if i >= miniter:
if err < criteria:
if verbose:
print("optimization complete at iter %i" % i)
break
eta_t = eta
mgc_arr = _mgc_mgcepnorm(b_gamma, alpha, gamma, otype)
return mgc_arr
_sp_convert_results = []
def _sp_collect_result(result):
_sp_convert_results.append(result)
def _sp_convert(c_i, order, alpha, gamma, miniter, maxiter, criteria,
otype, verbose):
i = c_i[0]
tot_i = c_i[1]
sp_i = c_i[2]
r_i = (i, _sp2mgc(sp_i, order=order, alpha=alpha, gamma=gamma,
miniter=miniter, maxiter=maxiter, criteria=criteria,
otype=otype, verbose=verbose))
return r_i
def sp2mgc(sp, order=20, alpha=0.35, gamma=-0.41, miniter=2,
maxiter=30, criteria=0.001, otype=0, verbose=False):
"""
Accepts 1D or 2D one-sided spectrum (complex or real valued).
If 2D, assumes time is axis 0.
Returns mel generalized cepstral coefficients.
Based on r9y9 Julia code
https://github.com/r9y9/MelGeneralizedCepstrums.jl
"""
if len(sp.shape) == 1:
sp = np.concatenate((sp, sp[:, 1:][:, ::-1]), axis=0)
return _sp2mgc(sp, order=order, alpha=alpha, gamma=gamma,
miniter=miniter, maxiter=maxiter, criteria=criteria,
otype=otype, verbose=verbose)
else:
sp = np.concatenate((sp, sp[:, 1:][:, ::-1]), axis=1)
# Slooow, use multiprocessing to speed up a bit
# http://blog.shenwei.me/python-multiprocessing-pool-difference-between-map-apply-map_async-apply_async/
# http://stackoverflow.com/questions/5666576/show-the-progress-of-a-python-multiprocessing-pool-map-call
c = [(i + 1, sp.shape[0], sp[i]) for i in range(sp.shape[0])]
p = Pool()
start = time.time()
if verbose:
print("Starting conversion of %i frames" % sp.shape[0])
print("This may take some time...")
# takes ~360s for 630 frames, 1 process
itr = p.map_async(functools.partial(_sp_convert, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=False), c, callback=_sp_collect_result)
sz = len(c) // itr._chunksize
if (sz * itr._chunksize) != len(c):
sz += 1
last_remaining = None
while True:
remaining = itr._number_left
if verbose:
if remaining != last_remaining:
last_remaining = remaining
print("%i chunks of %i complete" % (sz - remaining, sz))
if itr.ready():
break
time.sleep(.5)
"""
# takes ~455s for 630 frames
itr = p.imap_unordered(functools.partial(_sp_convert, order=order, alpha=alpha, gamma=gamma, miniter=miniter, maxiter=maxiter, criteria=criteria, otype=otype, verbose=False), c)
res = []
# print ~every 5%
mod = int(len(c)) // 20
if mod < 1:
mod = 1
for i, res_i in enumerate(itr, 1):
res.append(res_i)
if i % mod == 0 or i == 1:
print("%i of %i complete" % (i, len(c)))
"""
p.close()
p.join()
stop = time.time()
if verbose:
print("Processed %i frames in %s seconds" % (sp.shape[0], stop - start))
# map_async result comes in chunks
flat = [a_i for a in _sp_convert_results for a_i in a]
final = [o[1] for o in sorted(flat, key=lambda x: x[0])]
for i in range(len(_sp_convert_results)):
_sp_convert_results.pop()
return np.array(final)
def win2mgc(windowed_signal, order=20, alpha=0.35, gamma=-0.41, miniter=2,
maxiter=30, criteria=0.001, otype=0, verbose=False):
"""
Accepts 1D or 2D array of windowed signal frames.
If 2D, assumes time is axis 0.
Returns mel generalized cepstral coefficients.
Based on r9y9 Julia code
https://github.com/r9y9/MelGeneralizedCepstrums.jl
"""
if len(windowed_signal.shape) == 1:
sp = np.fft.fft(windowed_signal)
return _sp2mgc(sp, order=order, alpha=alpha, gamma=gamma,
miniter=miniter, maxiter=maxiter, criteria=criteria,
otype=otype, verbose=verbose)
else:
raise ValueError("2D input not yet complete for win2mgc")
def _mgc_freqt(wc, c, alpha):
prev = np.zeros_like(wc)
dst_order = len(wc) - 1
wc *= 0
m1 = len(c) - 1
for i in range(-m1, 1, 1):
prev[:] = wc
if dst_order >= 0:
wc[0] = c[-i] + alpha * prev[0]
if dst_order >= 1:
wc[1] = (1. - alpha * alpha) * prev[0] + alpha * prev[1]
for m in range(2, dst_order + 1):
wc[m] = prev[m - 1] + alpha * (prev[m] - wc[m - 1])
def _mgc_mgc2mgc(src_ceps, src_alpha, src_gamma, dst_order, dst_alpha, dst_gamma):
dst_ceps = np.zeros((dst_order + 1,))
alpha = (dst_alpha - src_alpha) / (1. - dst_alpha * src_alpha)
if alpha == 0.:
new_dst_ceps = copy.deepcopy(src_ceps)
_mgc_gnorm(new_dst_ceps, src_gamma)
dst_ceps = _mgc_gc2gc(new_dst_ceps, src_gamma, dst_order, dst_gamma)
_mgc_ignorm(dst_ceps, dst_gamma)
else:
_mgc_freqt(dst_ceps, src_ceps, alpha)
_mgc_gnorm(dst_ceps, src_gamma)
new_dst_ceps = copy.deepcopy(dst_ceps)
dst_ceps = _mgc_gc2gc(new_dst_ceps, src_gamma, dst_order, dst_gamma)
_mgc_ignorm(dst_ceps, dst_gamma)
return dst_ceps
_mgc_convert_results = []
def _mgc_collect_result(result):
_mgc_convert_results.append(result)
def _mgc_convert(c_i, alpha, gamma, fftlen):
i = c_i[0]
tot_i = c_i[1]
mgc_i = c_i[2]
r_i = (i, _mgc_mgc2mgc(mgc_i, src_alpha=alpha, src_gamma=gamma,
dst_order=fftlen // 2, dst_alpha=0., dst_gamma=0.))
return r_i
def mgc2sp(mgc_arr, alpha=0.35, gamma=-0.41, fftlen="auto", fs=None,
mode="world_pad", verbose=False):
"""
Accepts 1D or 2D array of mgc
If 2D, assume time is on axis 0
Returns reconstructed smooth spectrum
Based on r9y9 Julia code
https://github.com/r9y9/MelGeneralizedCepstrums.jl
"""
if mode != "world_pad":
raise ValueError("Only currently supported mode is world_pad")
if fftlen == "auto":
if fs == None:
raise ValueError("fs must be provided for fftlen 'auto'")
f0_low_limit = 71
fftlen = int(2 ** np.ceil(np.log2(3. * float(fs) / f0_low_limit + 1)))
if verbose:
print("setting fftlen to %i" % fftlen)
if len(mgc_arr.shape) == 1:
c = _mgc_mgc2mgc(mgc_arr, alpha, gamma, fftlen // 2, 0., 0.)
buf = np.zeros((fftlen,), dtype=c.dtype)
buf[:len(c)] = c[:]
return np.fft.rfft(buf)
else:
# Slooow, use multiprocessing to speed up a bit
# http://blog.shenwei.me/python-multiprocessing-pool-difference-between-map-apply-map_async-apply_async/
# http://stackoverflow.com/questions/5666576/show-the-progress-of-a-python-multiprocessing-pool-map-call
c = [(i + 1, mgc_arr.shape[0], mgc_arr[i]) for i in range(mgc_arr.shape[0])]
p = Pool()
start = time.time()
if verbose:
print("Starting conversion of %i frames" % mgc_arr.shape[0])
print("This may take some time...")
#itr = p.map(functools.partial(_mgc_convert, alpha=alpha, gamma=gamma, fftlen=fftlen), c)
#raise ValueError()
# 500.1 s for 630 frames process
itr = p.map_async(functools.partial(_mgc_convert, alpha=alpha, gamma=gamma, fftlen=fftlen), c, callback=_mgc_collect_result)
sz = len(c) // itr._chunksize
if (sz * itr._chunksize) != len(c):
sz += 1
last_remaining = None
while True:
remaining = itr._number_left
if verbose:
if last_remaining != remaining:
last_remaining = remaining
print("%i chunks of %i complete" % (sz - remaining, sz))
if itr.ready():
break
time.sleep(.5)
p.close()
p.join()
stop = time.time()
if verbose:
print("Processed %i frames in %s seconds" % (mgc_arr.shape[0], stop - start))
# map_async result comes in chunks
flat = [a_i for a in _mgc_convert_results for a_i in a]
final = [o[1] for o in sorted(flat, key=lambda x: x[0])]
for i in range(len(_mgc_convert_results)):
_mgc_convert_results.pop()
c = np.array(final)
buf = np.zeros((len(c), fftlen), dtype=c.dtype)
buf[:, :c.shape[1]] = c[:]
return np.exp(np.fft.rfft(buf, axis=-1).real)
def run_mgc_example():
import matplotlib.pyplot as plt
fs, x = wavfile.read("test16k.wav")
pos = 3000
fftlen = 1024
win = np.blackman(fftlen) / np.sqrt(np.sum(np.blackman(fftlen) ** 2))
xw = x[pos:pos + fftlen] * win
sp = 20 * np.log10(np.abs(np.fft.rfft(xw)))
mgc_order = 20
mgc_alpha = 0.41
mgc_gamma = -0.35
mgc_arr = win2mgc(xw, order=mgc_order, alpha=mgc_alpha, gamma=mgc_gamma, verbose=True)
xwsp = 20 * np.log10(np.abs(np.fft.rfft(xw)))
sp = mgc2sp(mgc_arr, mgc_alpha, mgc_gamma, fftlen)
plt.plot(xwsp)
plt.plot(20. / np.log(10) * np.real(sp), "r")
plt.xlim(1, len(xwsp))
plt.show()