-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
53 lines (38 loc) · 1.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import numpy as np
import os
recognizer = cv2.face.LBPHFaceRecognizer_create()
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def get_images_and_labels(data_dir):
image_paths = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.jpg')]
faces = []
labels = []
label_map = {}
label_counter = 0
for image_path in image_paths:
img = cv2.imread(image_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces_detected = face_cascade.detectMultiScale(gray)
for (x, y, w, h) in faces_detected:
face = gray[y:y+h, x:x+w]
try:
filename = os.path.basename(image_path)
label_str = filename.split('.')[1]
if label_str not in label_map:
label_map[label_str] = label_counter
label_counter += 1
label = label_map[label_str]
faces.append(face)
labels.append(label)
except (IndexError, ValueError):
print(f"Error extracting label from filename: {filename}")
continue
return faces, labels
print("Training face recognizer...")
faces, labels = get_images_and_labels('dataset')
if len(faces) == 0 or len(labels) == 0:
print("No faces found for training. Ensure images are properly labeled and available.")
else:
recognizer.train(faces, np.array(labels))
recognizer.save('trainer.yml')
print("Training complete.")