-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlanet.cpp
1229 lines (1069 loc) · 42.3 KB
/
Planet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <vlCore/Matrix4.hpp>
#include <cmath>
#include <deque>
#include <map>
#include <queue>
#include "Planet.h"
#include "delaunator.h"
#include "IndexedTessellator.h"
#include "util/PerlinNoise.h"
Planet::Planet() :
rnd( 0 )
{
generateColorMap();
}
void Planet::generate() {
Profiler profiler( "SphereGenerator" );
bool dirty = pointCount.dirty || jitter.dirty;
if ( dirty ) {
// regenerate points, and every following step
nScale = 2.0 / sqrt( (double)pointCount() );
rnd = math::rng( 0 );
points.clear();
kdTree.clear();
points.resize( pointCount() );
generatePoints( points, jitter() );
profiler( "points" );
for ( int i = 0; i < points.size(); ++i ) {
kdTree.add( points[i], i );
}
kdTree.rebalance();
profiler( "kdTree" );
calculateCoords();
pointsDirty = true;
regenerateTriangles = true;
pointCount.clear();
jitter.clear();
profiler( "coords" );
}
// phase 1: points, done
if ( phase() <= 1 ) {
lastResults = profiler.results();
return;
}
dirty = dirty || regenerateTriangles;
if ( dirty ) {
std::vector<double> stereo = getStereoPoints();
delaunator::Delaunator d( stereo );
triangles = std::move( d.triangles );
halfedges = std::move( d.halfedges );
fillSouthPole();
profiler( "triangles" );
trianglesDirty = true;
regenerateTriangles = false;
regenerateCells = true;
}
dirty = dirty || useCentroids.dirty || normalizeCentroids.dirty;
if ( dirty ) {
generateCenters( useCentroids(), normalizeCentroids() );
useCentroids.clear();
normalizeCentroids.clear();
profiler( "center points" );
regenerateCells = true;
}
// phase 2: triangles, done
if ( phase() == 2 ) {
lastResults = profiler.results();
return;
}
dirty = dirty || moisture.dirty || regenerateCells;
if ( dirty ) {
generateCells( moisture() / 100.0f );
profiler( "cells" );
moisture.clear();
cellsDirty = true;
regenerateCells = false;
regeneratePlates = true;
}
// phase 3: cells, done
if ( phase() == 3 ) {
lastResults = profiler.results();
return;
}
dirty = dirty || plateCount.dirty || ocean.dirty || regeneratePlates;
if ( dirty ) {
generatePlates( plateCount(), ocean() / 100.0f );
profiler( "plates" );
plateCount.clear();
ocean.clear();
platesDirty = true;
regeneratePlates = false;
regenerateHeightMap = true;
}
// phase 4: plates, done
if ( phase() == 4 ) {
lastResults = profiler.results();
return;
}
dirty = dirty || collisionThreshold.dirty || noiseScale.dirty || noiseOctaves.dirty || noiseIntensity.dirty | regenerateHeightMap;
if ( dirty ) {
applyPlateMotion2( collisionThreshold() );
profiler( "plate movement" );
collisionThreshold.clear();
noiseScale.clear();
noiseOctaves.clear();
noiseIntensity.clear();
heightMapDirty = true;
regenerateHeightMap = false;
regenerateColors = true;
}
dirty = dirty || regenerateColors;
if ( dirty ) {
updateCellColors();
profiler( "colors" );
cellColorsDirty = true;
regenerateColors = false;
}
// phase 5: height map, done
if ( phase() == 5 ) {
lastResults = profiler.results();
return;
}
lastResults = profiler.results();
}
vl::dvec2 Planet::toStereo( const vl::fvec3& v ) {
double y = 1.0 - v.y();
// prevent divide by zero
if ( y < 1e-7 ) {
y = 1e-7;
}
return vl::dvec2( v.x() / y, v.z() / y );
}
std::vector<double> Planet::getStereoPoints() {
// See <https://en.wikipedia.org/wiki/Stereographic_projection>
std::vector<double> XY( points.size() * 2 );
for ( int i = 0; i < points.size(); ++i ) {
vl::dvec2 xy = toStereo( points[i] );
XY[i * 2] = -xy.x(); // this'll flip the orientation of the generated triangles
XY[i * 2 + 1] = xy.y();
}
return std::move( XY );
}
void Planet::generatePoints( std::vector<vl::fvec3>& pts, float jitter ) {
// fibonacci sphere
double goldenRatio = (1.0 + sqrt(5.0))/2.0;
for ( int i = 0; i < pts.size(); ++i ) {
double theta = 2 * vl::dPi * i / goldenRatio; // longitude
double phi = acos(1 - 2 * (i+0.5) / pts.size() ); // latitude
vl::vec3 v = latLonToVec( phi, theta );
if ( jitter > 0 ) {
// calculate a vector on the sphere that is perpendicular to V
// just take the longitude, add 90 degrees and use latitude equator (half pi)
/*theta += (vl::dPi / 2);
phi = vl::dPi / 2;
vl::vec3 v2 = latLonToVec( phi, theta );
// rotate V2 around V by a random amount (0-360 deg)
v2 = vl::mat4::getRotation( rnd( 360.0f ), v ) * v2;
// now rotate V around V2
v = vl::mat4::getRotation( rnd( jitter ) , v2 ) * v;*/
v = destinationPoint( v, rnd( jitter ) * vl::fDEG_TO_RAD, rnd( 360.0f ) * vl::fDEG_TO_RAD );
}
pts[i] = v;
}
}
void Planet::fillSouthPole() {
// delaunator leaves a hole in the south pole that needs to be patched
// we'll use the tessellator for that
// start by finding all the edges that have no neighbor
std::vector<std::pair<int, int>> pieces;
std::vector<int> idxs;
int firstMissing = -1;
for ( int i = 0; i < halfedges.size(); ++i ) {
if ( halfedges[i] == -1 ) {
if ( firstMissing == -1 ) {
// to speed up the lookup later on
firstMissing = i;
}
int tri = i / 3;
int a = i % 3;
int b = (a + 1) % 3;
// store the edge a-b
pieces.emplace_back( triangles[i], triangles[tri * 3 + b]);
}
}
// create the tessellator
vl::IndexedTessellator tess;
tess.setWindingRule(vl::TW_TESS_WINDING_ODD); // default
tess.setTessNormal(vl::fvec3(0,1,0)); // default is vl::fvec3(0,0,0)
tess.setBoundaryOnly(false); // default
tess.setTolerance(0.0); // default
tess.setTessellateIntoSinglePolygon(true);
// we'll need just one shape; define its size
tess.contours().push_back( pieces.size() );
// figure out the contour
int first = pieces[0].first;
for ( int i = 0; i < pieces.size(); ++i ) {
for (auto & piece : pieces) {
if ( piece.first == first ) {
tess.contourVerts().emplace_back( points[first] );
tess.indices().emplace_back( first );
first = piece.second;
}
}
}
// kick it off
tess.tessellate();
// translate result to indices
std::vector<int> tris = tess.tessellatedTris();
std::size_t endIdx = points.size() - 1;
points.reserve( points.size() + tess.combinedVerts().size() );
for ( const auto& v : tess.combinedVerts() ) {
points.push_back( v );
//printf( "Added new vert [%d] %f %f %f\n", points.size() - 1, v.x(), v.y(), v.z() );
}
triangles.reserve( triangles.size() + tris.size() );
halfedges.reserve( halfedges.size() + tris.size() );
for ( int tri : tris ) {
//printf( "[%d] = %d\n", triangles.size(), tri );
if ( tri < 0 ) {
tri = endIdx - tri;
//printf( "Will become %d\n", tri );
}
triangles.push_back( tri );
// we'll fix the halfedges later
halfedges.push_back( -1 );
}
// fix all the missing half-edges
for ( int i = firstMissing; i < triangles.size(); ++i ) {
if ( halfedges[i] != -1 ) {
continue;
}
int nextEdge = nextSide( i );
auto a = triangles[i];
auto b = triangles[nextEdge];
//printf( "[%d] looking for %d, %d\n", i, a, b);
// find the triangle with side b-a
for ( int j = i + 1; j < triangles.size(); ++j ) {
if ( triangles[j] != b ) {
continue;
}
int nextEdge2 = nextSide(j);
if ( triangles[nextEdge2] == a) {
//printf("found at %d\n", j);
halfedges[i] = j;
halfedges[j] = i;
break;
}
}
}
}
int Planet::nextSide( int side ) {
return (side % 3) == 2 ? side - 2 : side + 1;
}
int Planet::prevSide( int side ) {
return (side % 3) == 0 ? side + 2 : side - 1;
}
void Planet::generateCenters( bool centroid, bool normalize ) {
centers.clear();
centers.resize( triangles.size() / 3 );
if ( centroid ) {
for ( int i = 0; i < centers.size(); i++ ) {
// just calculate the average of the three corners of the triangle
centers[i] =
((points[ triangles[i * 3] ] +
points[ triangles[i * 3 + 1] ] +
points[ triangles[i * 3 + 2] ] ) / 3);
if ( normalize ) {
centers[i] = centers[i].normalize();
}
}
} else {
for ( int i = 0; i < centers.size(); i++ ) {
vl::fvec3 a = points[ triangles[i * 3] ];
vl::fvec3 b = points[ triangles[i * 3 + 1] ];
vl::fvec3 c = points[ triangles[i * 3 + 2] ];
vl::fvec3 ac = c - a;
vl::fvec3 ab = b - a;
vl::fvec3 abXac = vl::cross( ab, ac );
vl::fvec3 numerator =
(vl::cross( abXac, ab ) * ac.lengthSquared()) +
(vl::cross( ac, abXac ) * ab.lengthSquared());
vl::fvec3 toCircumsphereCenter = numerator * ( 1.0 / ( 2.0 * abXac.lengthSquared() ) );
centers[i] = (a + toCircumsphereCenter);
if ( normalize ) {
centers[i] = centers[i].normalize();
}
}
}
}
void Planet::generateCells( float moisture ) {
cells.clear();
cells.resize( points.size() );
for ( int i = 0; i < points.size(); ++i ) {
cells[i].point = i;
cells[i].plate = -1;
cells[i].color = (points[i] + 1.0) / 2.0 * vl::fvec3(1.0, 0.8, 0.9);
cells[i].moisture = moisture;
}
for ( std::size_t i = 0; i < triangles.size(); ++i ) {
std::size_t innerTri = i / 3;
std::size_t outerTri = halfedges[i] / 3;
std::size_t point = triangles[i];
std::size_t neighbor = triangles[nextSide(i)];
auto distance = (float)getGreatCircleDistance(points[point], points[neighbor]);
auto length = (float)getGreatCircleDistance(centers[outerTri], centers[innerTri]);
double bearing = getBearing3( points[point], points[neighbor] ) ;
const auto& p = points[point];
const auto& n = points[neighbor];
//printf( "%f,%f,%f - %f,%f,%f = %f (%f) %f (%f)\n", p.x(), p.y(), p.z(), n.x(), n.y(), n.z(), bearing, bearing*vl::dRAD_TO_DEG, bearing2, bearing2*vl::dRAD_TO_DEG );
cells[point].edges.push_back( {outerTri, innerTri, neighbor, distance, length, static_cast<float>(bearing)} );
}
// sort edges
for ( cell& cell : cells ) {
std::vector<edge> sortedEdges( cell.edges.size() );
sortedEdges[0] = cell.edges[0];
for ( int i = 1; i < cell.edges.size(); ++i ) {
for (const auto & edge : cell.edges) {
if ( edge.a == sortedEdges[ i - 1 ].b ) {
sortedEdges[i] = edge;
break;
}
}
}
cell.edges = std::move( sortedEdges );
cell.plateBorder = false;
}
}
void Planet::generatePlates( int plateCount, float ocean ) {
// reset rng
rnd = math::rng( 0 );
// reset cells
for ( auto& cell : cells ) {
cell.plate = -1;
}
plates.clear();
// pick random regions
// now we could just pick any random region, but instead we're going to pick a number of random points
// on the sphere and find the region that's closest to that point
// this way the selected region will remain more or less the same, regardless of the number of regions
// we'll first generate some points using the fibonacci sphere
std::vector<vl::fvec3> pts( 10000 );
generatePoints( pts, 0.0f );
// then pick random points
struct plateOrigin {
vl::fvec3 v;
vl::fvec3 axis;
float distance = 0.0f;
float rot;
int cell = -1;
};
std::vector<plateOrigin> origins( plateCount );
for ( auto& origin : origins ) {
origin.v = pts[rnd( (int)pts.size() ) ];
// assign a random direction by moving v in a random direction
vl::fvec3 v = origin.v;
// calculate a vector on the sphere that is perpendicular to V
// just take the longitude, add 90 degrees and use latitude equator (half pi)
double theta = vecToLon( v ) + (vl::dPi / 2);
double phi = vl::dPi / 2;
vl::vec3 v2 = latLonToVec( phi, theta );
// rotate V2 around V by a random amount (0-360 deg)
origin.rot = rnd( 360.0f );
v2 = vl::mat4::getRotation( origin.rot, v ) * v2;
// now rotate V around V2
origin.axis = v2;
}
for ( auto& origin : origins ) {
const tree* t = kdTree.find( origin.v );
for ( const auto& p : t->points ) {
if ( origin.cell == -1 || (origin.v - p.first).lengthSquared() < origin.distance ) {
origin.cell = p.second;
origin.distance = (origin.v - p.first).lengthSquared();
}
}
}
std::deque<int> todo;
for ( auto& plate : origins ) {
if ( plate.cell != -1 && cells[plate.cell].plate == -1 ) {
cells[plate.cell].plate = todo.size();
cells[plate.cell].dir = getDir( points[cells[plate.cell].point], plate.axis, 5 );
cells[plate.cell].bearing = getBearing3( points[cells[plate.cell].point], getDir(
points[cells[plate.cell].point],
plate.axis,
5 ));
todo.push_back( plate.cell );
plates.push_back(
{ plate.v,
static_cast<std::size_t>(plate.cell),
plate.axis,
false,
1 });
}
}
// do a breadth first search
rnd = math::rng( 0 );
int largest = 0;
while ( !todo.empty() ) {
if ( todo.size() > largest ) {
largest = todo.size();
}
cell& c = cells[todo.front()];
todo.pop_front();
for ( auto& edge : c.edges ) {
cell& neighbor = cells[edge.neighbor];
if ( neighbor.plate == -1 ) {
neighbor.plate = c.plate;
plates[c.plate].cellCount++;
neighbor.elevation = c.elevation;
// direction of cell will lower when distance to axis of rotation gets lower
neighbor.dir = getDir(
points[neighbor.point],
plates[c.plate].axisOfRotation,
5 ) * distanceToLine(points[neighbor.point], plates[c.plate].axisOfRotation);
neighbor.bearing = getBearing3( points[neighbor.point], getDir(
points[neighbor.point],
plates[c.plate].axisOfRotation,
5 ));
//auto it1 = std::next(todo.begin(), rnd((int)todo.size()));
//todo.insert( it1, edge.neighbor );
todo.push_back( edge.neighbor );
}
}
}
for ( auto& cell : cells ) {
for ( auto& edge : cell.edges ) {
edge.plateBorder = cells[edge.neighbor].plate != cell.plate;
if ( edge.plateBorder ) {
cell.plateBorder = true;
}
}
}
std::size_t cellCount = 0;
std::size_t oceanCount = 0;
for( auto& plate : plates ) {
if ( float(oceanCount + plate.cellCount) / cells.size() <= ocean ) {
plate.oceanic = true;
oceanCount += plate.cellCount;
}
cellCount += plate.cellCount;
}
printf( "Assigned %d of %d cells to %d plates (%d oceanic, %d%%)\n",
cellCount,
cells.size(),
plates.size(),
oceanCount,
(oceanCount * 100) / cellCount );
}
vl::fvec3 Planet::getDir( const vl::fvec3& v, float degrees ) {
// assign a random direction by moving v in a random direction
// calculate a vector on the sphere that is perpendicular to V
// just take the longitude, add 90 degrees and use latitude equator (half pi)
double theta = vecToLon( v ) + (vl::dPi / 2);
double phi = vl::dPi / 2;
vl::vec3 v2 = latLonToVec( phi, theta );
v2 = vl::mat4::getRotation( degrees, v ) * v2;
// now rotate V around V2
vl::vec3 v3 = vl::mat4::getRotation( 5, v2 ) * v;
return (v3 - v).normalize();
}
vl::fvec3 Planet::getDir( const vl::fvec3& v, const vl::fvec3& axis, float degrees ) {
return ((vl::mat4::getRotation( degrees, axis ) * v) - v).normalize();
}
void Planet::updateCellColors() {
for ( auto& cell : cells ) {
cell.color = getColor( cell.elevation, cell.moisture );
}
}
vl::fvec3 Planet::getColor( float elevation, float moisture ) {
float e = elevation > 0.0f? 0.5f * (elevation * elevation + 1.0f) : 0.5f * (elevation + 1.0f);
// TODO: add moisture
int eIdx = e * 63.0f;
int mIdx = moisture * 63.0f;
return colormap[mIdx * 64 + eIdx];
}
void Planet::applyPlateMotion( float collisionThreshold ) {
float epsilon = 1e-2f;
std::set<std::size_t> coastlines;
std::set<std::size_t> mountains;
std::set<std::size_t> oceans;
// FIXME: something weird is going on here, doesn't work correctly...
for ( auto& c : cells ) {
float bestCompression = 0;//std::numeric_limits<float>::infinity();
int r = -1;
for ( auto& edge : c.edges ) {
const cell& n = cells[edge.neighbor];
if ( n.plate == c.plate ) {
// only interested in border cells
continue;
}
float distance = (points[c.point] - points[n.point]).length();
float distance2 = ((points[c.point] + (c.dir * nScale)) - (points[n.point] + (n.dir * nScale))).length();
float compression = distance - distance2;
if ( r == -1 || compression > bestCompression ) {
r = edge.neighbor;
bestCompression = compression;
c.compression = bestCompression / nScale;
c.r = r;
}
}
if ( r != -1) {
bool collided = bestCompression > collisionThreshold * nScale;
if ( plates[c.plate].oceanic && plates[cells[r].plate].oceanic ) {
(collided ? coastlines : oceans).insert( c.point );
} else if ( !plates[c.plate].oceanic && !plates[cells[r].plate].oceanic ) {
if ( collided ) {
mountains.insert( c.point );
}
} else {
(collided ? mountains : coastlines ).insert( c.point);
}
}
}
for ( auto& plate : plates ) {
((plate.oceanic) ? oceans : coastlines ).insert( plate.cell );
}
std::set<std::size_t> stopCells;
stopCells.insert( coastlines.begin(), coastlines.end() );
stopCells.insert( mountains.begin(), mountains.end() );
stopCells.insert( oceans.begin(), oceans.end() );
std::vector<float> distMountains = assignDistanceField( mountains, stopCells );
std::vector<float> distOceans = assignDistanceField( oceans, stopCells );
std::vector<float> distCoastlines = assignDistanceField( coastlines, stopCells );
epsilon = 1e-3;
for ( auto& cell : cells ) {
cell.dMnt = distMountains[cell.point] + epsilon;
cell.dOcn = distOceans[cell.point] + epsilon;
cell.dCst = distCoastlines[cell.point] + epsilon;
if ( cell.dMnt == std::numeric_limits<float>::infinity() && cell.dOcn == std::numeric_limits<float>::infinity() ) {
cell.elevation = 0.1;
} else {
cell.elevation = (float)((1.0 / cell.dMnt - 1.0 / cell.dOcn) / (1.0 / cell.dMnt + 1.0 / cell.dOcn + 1.0 / cell.dCst));
}
}
}
std::vector<float> Planet::assignDistanceField( const std::set<size_t>& seeds, const std::set<size_t>& stops ) {
std::vector<float> distances( cells.size(), std::numeric_limits<float>::infinity() );
rnd = math::rng( 0 );
std::vector<std::size_t> queue;
queue.reserve( cells.size() );
for ( std::size_t seed : seeds ) {
queue.push_back( seed );
distances[seed] = 0;
}
// breadth first search
for ( std::size_t i = 0; i < queue.size(); ++i ) {
std::size_t pos = i + ((i == queue.size() - 1) ? 0 : rnd( ((int)(queue.size() - i)) - 1 ));
std::size_t cIdx = queue[pos];
queue[pos] = queue[i];
cell& c = cells[cIdx];
for ( const auto& edge : c.edges ) {
if ( distances[edge.neighbor] == std::numeric_limits<float>::infinity() && stops.find(edge.neighbor) == stops.end() ) {
distances[edge.neighbor] = distances[c.point] + nScale;
queue.push_back( edge.neighbor );
}
}
}
return std::move( distances );
}
void Planet::applyPlateMotion2( float threshold ) {
for ( auto& cell : cells ) {
if ( plates[cell.plate].oceanic ) {
cell.elevation = -0.5f;
} else {
cell.elevation = 0.5f;
}
}
std::set<std::size_t> coastlines;
std::set<std::size_t> mountains;
std::set<std::size_t> oceans;
// https://www.youtube.com/watch?v=x_Tn66PvTn4
// determine boundary type
// 1. divergent (moving apart)
// a. oceanic-oceanic: volcanoes, ridge, rift valley, volcanic islands
// b. continental-continental: rift valley, volcanoes
// c. oceanic-continental: new ocean floor
// 2. convergent (moving towards each other)
// a. oceanic-continental: lower oceanic (subduction zone, oceanic trench), rise continental (mountains/volcanoes)
// b. oceanic-oceanic: same, but under water
// c. continental-continental: tall mountains
// 3. transform (grind)
// a. continental-continental: earthquakes
// b. oceanic-continental: earthquakes
// c. oceanic-oceanic: earthquakes
for ( auto& cell : cells ) {
if ( !cell.plateBorder ) {
continue;
}
float convergentForce = 0;
float convergentLength = 0;
float divergentForce = 0;
float divergentLength = 0;
for ( auto& edge : cell.edges ) {
if ( !edge.plateBorder ) {
continue;
}
// total compression/expansion is influenced by:
// the amount of movement
// whether the edge is perpendicular to the direction of movement
// the length of the edge
// the movement of the neighboring cell
// calculate edge factor, 1.0 for perpendicular, 0 for parallel
edge.edgeFactor = 1.0f - fabs( vl::dot( (centers[edge.a] - centers[edge.b]).normalize(), cell.dir ) );
// calculate the length of the edge, take scale into account
edge.lengthFactor = edge.length / nScale;
// calculate neighbor direction factor
edge.neighborDirFactor = -vl::dot( cells[edge.neighbor].dir, cell.dir );
// calculate whether movement is divergent or convergent
edge.convergent = vl::dot( points[cells[edge.neighbor].point] - points[cell.point], cell.dir ) >= 0;
// take original magnitude
float f = cell.dir.length();
// increase/decrease by amount of force acted by neighbor cell
f = f + f * edge.neighborDirFactor;
// multiply by edge factor and length factor
f *= edge.edgeFactor * edge.lengthFactor;
edge.force = f;
if ( edge.convergent ) {
convergentForce += f;
convergentLength += edge.length;
} else {
divergentForce += f;
divergentLength += edge.length;
}
}
if ( divergentLength == 0 && convergentLength == 0 ) {
continue;
}
float totalLength = divergentLength + convergentLength;
cell.divergentForce = divergentForce * (divergentLength / totalLength);
cell.convergentForce = convergentForce * (convergentLength / totalLength);
if ( cell.convergentForce >= cell.divergentForce ) {
if ( plates[cell.plate].oceanic ) {
bool otherContinental = false;
for ( auto& edge : cell.edges ) {
if ( !edge.plateBorder ) {
continue;
}
if ( edge.convergent && !plates[cells[edge.neighbor].plate].oceanic ) {
otherContinental = true;
break;
}
}
if ( otherContinental ) {
// lower
cell.elevation -= cell.convergentForce / 4.0f;
} else {
// raise
cell.elevation += cell.convergentForce / 4.0f;
}
} else {
// raise
cell.elevation += cell.convergentForce / 2.0f;
}
} else {
// lower
cell.elevation -= cell.divergentForce / 2.0f;
}
if ( cell.elevation > 1.0f ) {
cell.elevation = 1.0f;
} else if ( cell.elevation < -1.0f ) {
cell.elevation = -1.0f;
}
if ( plates[cell.plate].oceanic ) {
oceans.insert( cell.point );
} else {
mountains.insert( cell.point );
}
}
std::set<std::size_t> stopCells;
stopCells.insert( mountains.begin(), mountains.end() );
stopCells.insert( oceans.begin(), oceans.end() );
//std::vector<float> distMountains = assignDistanceField2( stopCells, stopCells );
std::vector<float> distMountains = assignDistanceField2( mountains, stopCells, threshold );
std::vector<float> distOceans = assignDistanceField2( oceans, stopCells, threshold );
for ( auto& cell : cells ) {
cell.dMnt = distMountains[cell.point];
cell.dOcn = distOceans[cell.point];
}
PerlinNoise<float> noise;
for ( auto& cell : cells ) {
const vl::fvec3& v = points[cell.point];
cell.elevation += createNoise( v, noise );
}
}
std::vector<float> Planet::assignDistanceField2( const std::set<size_t>& seeds, const std::set<size_t>& stops, float factor ) {
std::vector<float> distances( cells.size(), std::numeric_limits<float>::infinity() );
rnd = math::rng( 0 );
std::set<size_t> done;
struct item {
float elevation;
float count;
};
std::set<std::size_t> queue;
for ( std::size_t seed : seeds ) {
queue.insert( seed );
done.insert( seed );
}
float weight = (sqrtf( pointCount() ) / 64.0f) * factor;
std::map<std::size_t, item> meta;
while ( !queue.empty() ) {
for ( auto& i : queue ) {
cell& c = cells[i];
for ( const auto& edge : c.edges ) {
if ( done.find( edge.neighbor ) == done.end() ) {
auto& j = meta[ edge.neighbor ];
if ( j.count == 0 ) {
j.elevation = cells[edge.neighbor].elevation;
j.count += 1;
}
j.elevation += c.elevation * weight;
j.count += weight;
}
}
}
queue.clear();
for ( auto& i : meta ) {
queue.insert( i.first );
done.insert( i.first );
cells[i.first].elevation = i.second.elevation / i.second.count;
distances[i.first] = cells[i.first].elevation;
}
meta.clear();
}
return distances;
}
void Planet::generateColorMap() {
int width = 64;
int height = 64;
colormap.resize( width * height );
for (int y = 0, p = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
float e = 2.0f * x / width - 1,
m = (float)y / height;
int r, g, b;
if (x == width/2 - 1) {
r = 48;
g = 120;
b = 160;
} else
if (x == width/2 - 2) {
r = 48;
g = 100;
b = 150;
} else if (x == width/2 - 3) {
r = 48;
g = 80;
b = 140;
} else
if (e < 0.0) {
r = 48 + 48*e;
g = 64 + 64*e;
b = 127 + 127*e;
} else { // adapted from terrain-from-noise article
m = m * (1-e); // higher elevation holds less moisture; TODO: should be based on slope, not elevation
r = 210 - 100*m;
g = 185 - 45*m;
b = 139 - 45*m;
r = 255 * e + r * (1-e),
g = 255 * e + g * (1-e),
b = 255 * e + b * (1-e);
}
colormap[p++] = vl::fvec3( r / 255.0f, g/255.0f, b/255.0f );
}
}
}
void Planet::calcLight( const vl::fvec3& ray ) {
for ( auto& cell : cells ) {
cell.illumination = (float)getIllumination( ray, points[cell.point] );
cell.atmosphere = (float)getAtmosphericDistance( ray, points[cell.point] );
}
}
std::vector<vl::fvec2> Planet::getDailyIllumination(
std::size_t cell,
float timeOfYear,
std::size_t samples) {
std::vector<vl::fvec2> illumination( samples );
double radTOY = (timeOfYear + 0.5) * 2 * vl::dPi; // offset by half to start in winter for northern hemisphere
double sunLatitude = axialTilt() * cos( radTOY );
double cosLat = cos( sunLatitude * vl::dDEG_TO_RAD );
double sinLat = sin( sunLatitude * vl::dDEG_TO_RAD );
vl::fvec3 p = points[cells[cell].point];
for ( std::size_t i = 0; i < samples; ++i ) {
double timeOfDay = (double)i / samples;
double radians = (2 * vl::dPi * timeOfDay); // negate to reverse rotation of sun
vl::fvec3 sun(
cosLat * cos( radians ),
sinLat,
cosLat * sin( radians ) );
illumination[i] = vl::fvec2( timeOfDay, getIllumination( sun, p ) );
}
return illumination;
}
std::vector<vl::fvec2> Planet::getAnnualIllumination(
std::size_t cell,
std::size_t samples) {
std::vector<vl::fvec2> illumination( samples );
for ( std::size_t i = 0; i < samples; ++i ) {
double timeOfYear = (double)i / samples;
double radTOY = (timeOfYear + 0.5) * 2 * vl::dPi; // offset by half to start in winter for northern hemisphere
double sunLatitude = axialTilt() * cos( radTOY );
double cosLat = cos( sunLatitude * vl::dDEG_TO_RAD );
double sinLat = sin( sunLatitude * vl::dDEG_TO_RAD );
double tmpIllumination = 0;
vl::fvec3 p = points[cells[cell].point];
for ( std::size_t j = 0; j < 10; ++j ) {
double timeOfDay = (double)j / 10;
double radians = (2 * vl::dPi * timeOfDay); // negate to reverse rotation of sun
vl::fvec3 sun(
cosLat * cos( radians ),
sinLat,
cosLat * sin( radians ) );
tmpIllumination += getIllumination( sun, p );
}
illumination[i] = vl::fvec2( timeOfYear, tmpIllumination / 10.0 );
}
return illumination;
}
void Planet::calcAnnualIllumination( std::size_t yearSamples, std::size_t daySamples ) {
annualIllumination.clear();
annualIllumination.resize( 181, 0 );
// calculate the annual illumination for every degree of latitude
double oneOverSamples = 1.0 / (yearSamples * daySamples);
for ( std::size_t i = 0; i < yearSamples; ++i ) {
float timeOfYear = (float)i / yearSamples;
double radTOY = (timeOfYear + 0.5) * 2 * vl::dPi;
double sunLatitude = axialTilt() * cos( radTOY );
double cosLat = cos( sunLatitude * vl::dDEG_TO_RAD );
double sinLat = sin( sunLatitude * vl::dDEG_TO_RAD );
for ( std::size_t j = 0; j < daySamples; ++j ) {
double timeOfDay = (double)j / daySamples;
double radians = (2 * vl::dPi * timeOfDay); // negate to reverse rotation of sun
vl::fvec3 sun(
cosLat * cos( radians ),
sinLat,
cosLat * sin( radians ) );
for ( int lat = 0; lat <= 180; ++lat ) {
annualIllumination[lat] +=
getIllumination( sun, latLonToVec( lat * vl::dDEG_TO_RAD, 0 ) ) * oneOverSamples;
}
}
}
// now use linear interpolation to update the individual cells (good enough)
for ( auto& cell : cells ) {
double lat = coords[cell.point].x() * vl::dRAD_TO_DEG;
double lowLat;
double highFact = std::modf( lat, &lowLat );
double lowFact = 1.0 - highFact;
double highLat = lowLat + 1;
if ( highLat > 180 ) {
highLat = 180;
}
cell.annualIllumination = (float)(annualIllumination[lowLat] * lowFact + annualIllumination[highLat] * highFact);
}
}
void Planet::calculateCoords() {
coords.resize( points.size() );
for ( int i = 0; i < coords.size(); ++i ) {
coords[i] = vecToLatLon( points[i] );
}
}
double Planet::safeGetAngle( const vl::fvec3& v1, const vl::fvec3& v2 ) {
double dot = vl::dot( v1, v2 );
// in some occasions, the result can exceed the range [-1,1]; clamp the result
if ( dot > 1.0 ) { dot = 1.0; }
if ( dot < -1.0 ) { dot = -1.0; }
return std::acos( dot );
}
double Planet::getGreatCircleDistance( const vl::fvec3& v1, const vl::fvec3& v2 ) {
// https://en.wikipedia.org/wiki/Great-circle_distance
// calculates the shortest distance on sphere given two points on a unit-sphere
// it can be calculated by taking the angle between the two points
// express it as the percentage of a circle
// multiply by the circumference of the circle, and done
// In our case, we have a unit-sphere, so the circumference is 2PI
// And the angle is expressed in radians, so that's also 2PI
// So our distance is equal to our angle!
return safeGetAngle( v1, v2 );
}