-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHW4-ProblemStatements.tex
125 lines (114 loc) · 2.57 KB
/
HW4-ProblemStatements.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
\documentclass[12pt]{article}
\usepackage{lingmacros}
\usepackage{tree-dvips}
\usepackage{amsmath}
\usepackage{accents}
\newcommand{\ubar}[1]{\underaccent{\bar}{#1}}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan,
}
\begin{document}
{\centering
\textbf{SIE 550 (Linear) Systems Theory\\Homework \#4 - Due date: Wednesday, April 5, 2017 \newline}\par
}
\noindent
\textbf{Problem 1:} Consider the following non-linear autonomous system
$$
\begin{cases}
\dot{x_1} = - |x_1|^{0.5} sgn(x_1)- x_1^5+x_2 \\
\dot{x_2}=-|x_2|^{0.5} sgn(x_2)-x_2^5-x_1
\end{cases}
$$
Study the Finite-Time (FTS) of the origin and answer the following questions:
\begin{enumerate}
\item Is the origin FTS?
\item Is the origin Globally FTS?
\item Find, if possible, the settling time
\end{enumerate}
\noindent
\textbf{Problem 2:} Consider the following non-linear non-autonomous first-order system
$$
\dot{x}=-\frac{|x|}{1+(cos(t))^2}
$$
Study the Finite-Time Stability (FTS) of the system \\
\noindent
\textbf{Problem 3:} Examine the controllability of the system ({\em Linear Systems Theory} Chapter 5, Problem 1 (page 287)
$$
\dot{x}=
\begin{pmatrix}
\frac{1}{t} & 0 \\
0 & \frac{1}{t}
\end{pmatrix} x +
\begin{pmatrix}
1 \\
1
\end{pmatrix} u
$$
\noindent
\textbf{Problem 4:} Compute matrix $W(t_0,t_1)$ for the system described below, and illustrate Properties (i) and (ii) of Theorem 5.2. Select the [0,1] interval. ({\em Linear Systems Theory} Chapter 5, Problem 3 (page 288)
$$
\dot{x}=
\begin{pmatrix}
1 & 1 \\
2 & 2
\end{pmatrix}
x +
\begin{pmatrix}
1 \\
0
\end{pmatrix} u
$$
\noindent
\textbf{Problem 5:} Determine if system
$$ \dot{x} =
\begin{pmatrix}
2 & 1 \\
0 & 2
\end{pmatrix} x +
\begin{pmatrix}
1 \\
1
\end{pmatrix} u
$$
is completely controllable by using the controllability matrix (5.10). ({\em Linear Systems Theory} Chapter 5, Problem 7 (page 288)\\
\noindent
\textbf{Problem 6:} Is there any input for system
$$ \dot{x}=
\begin{pmatrix}
1 & 1 \\
2 & 2
\end{pmatrix} x +
\begin{pmatrix}
1 \\
1
\end{pmatrix}u,\quad x(0)=
\begin{pmatrix}
1 \\
1
\end{pmatrix},$$
which controls the trajectory to
$$x(t)=\begin{pmatrix}
t + 1 \\
1
\end{pmatrix}
$$
in the interval [0,1]? ({\em Linear Systems Theory} Chapter 5, Problem 8 (page 288)\\
\noindent
\textbf{Problem 7:} Discuss the controllability of the mechanical system
$$\dot{x}=
\begin{pmatrix}
0 & 1 \\
0 & -6
\end{pmatrix}
x +
\begin{pmatrix}
0 \\
2
\end{pmatrix} u
$$
introduced in Problem 3.7. ({\em Linear Systems Theory} Chapter 5, Problem 11 (page 289)
\end{document}