-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patherror_lstm.py
82 lines (68 loc) · 1.93 KB
/
error_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
'''
this will simulate on the `stepper.py` with untrained Reynolds number ( Re = 150 )
and plots the error on each timestep
'''
import os
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import torch
import data_loader
import vae as V
import lstm as stp
import sys
encoder = V.VariationalAutoEncoder()
encoder.load_state_dict( torch.load( 'vae.pt' ) )
encoder.train( False )
stepper = stp.LSTM( 32, 128 )
stepper.load_state_dict( torch.load( 'lstm.pt' ) )
stepper.train( False )
# current state ( velx, vely )
state = torch.zeros( size=(1,2,256,512), dtype=torch.float32 )
cylinder_mask = torch.ones( (1, 1, 256, 512), dtype=torch.float32 )
dx = 10.0 / 511.0
for y in range(256):
for x in range(512):
fx = x*dx
fy = y*dx
fx = fx - 2.5
fy = fy - 2.5
if fx*fx + fy*fy < 0.5*0.5:
state[0, 0, y, x] = 0.0
state[0, 1, y, x] = 0.0
cylinder_mask[0, 0, y, x] = 0.0
else:
state[0, 0, y, x] = 1.0
state[0, 1, y, x] = 0.0
latent_mu, latent_logvar = encoder.encode( state )
errors = []
# answer
answer150 = data_loader.load_file('re150.dat')
latents, _ = encoder.encode( answer150[0:10,:,:] )
latents = latents.reshape(1,10,32)
iteration = 10
def step():
global state
global latents
global iteration
global answer150
# latents.shape = (1, T, 32)
# next_latents.shape = (1, 32)
next_latents = stepper(latents)
print( latents.shape )
next_state = encoder.decode( next_latents )
state = next_state*cylinder_mask
if latents.shape[1] >= 10:
latents = torch.concatenate( [latents[:,1:], next_latents.reshape(1,1,32)], dim=1 )
else:
latents = torch.concatenate( [latents, next_latents.reshape(1,1,32)], dim=1 )
iteration += 1
error = (answer150[iteration] - state).pow(2).mean().item()
errors.append(error)
for i in range(139):
step()
plt.plot( errors )
plt.xlabel( 'iteration' )
plt.ylabel( 'error' )
plt.yscale( 'log' )
plt.savefig( 'error_lstm150.png' )