This repository has been archived by the owner on Mar 2, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathelife01739.xml
1 lines (1 loc) · 219 KB
/
elife01739.xml
1
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD v1.1d1 20130915//EN" "JATS-archivearticle1.dtd"><article article-type="research-article" dtd-version="1.1d1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><front><journal-meta><journal-id journal-id-type="nlm-ta">elife</journal-id><journal-id journal-id-type="hwp">eLife</journal-id><journal-id journal-id-type="publisher-id">eLife</journal-id><journal-title-group><journal-title>eLife</journal-title></journal-title-group><issn publication-format="electronic">2050-084X</issn><publisher><publisher-name>eLife Sciences Publications, Ltd</publisher-name></publisher></journal-meta><article-meta><article-id pub-id-type="publisher-id">01739</article-id><article-id pub-id-type="doi">10.7554/eLife.01739</article-id><article-categories><subj-group subj-group-type="display-channel"><subject>Research article</subject></subj-group><subj-group subj-group-type="heading"><subject>Cell biology</subject></subj-group><subj-group subj-group-type="heading"><subject>Plant biology</subject></subj-group></article-categories><title-group><article-title>FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis</article-title></title-group><contrib-group><contrib contrib-type="author" id="author-8575"><name><surname>Waadt</surname><given-names>Rainer</given-names></name><xref ref-type="aff" rid="aff1"/><xref ref-type="aff" rid="aff2"/><xref ref-type="other" rid="par-4"/><xref ref-type="fn" rid="con1"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-8576"><name><surname>Hitomi</surname><given-names>Kenichi</given-names></name><xref ref-type="aff" rid="aff3"/><xref ref-type="aff" rid="aff4"/><xref ref-type="fn" rid="con2"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-8577"><name><surname>Nishimura</surname><given-names>Noriyuki</given-names></name><xref ref-type="aff" rid="aff1"/><xref ref-type="aff" rid="aff2"/><xref ref-type="fn" rid="pa1">†</xref><xref ref-type="fn" rid="con3"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-8578"><name><surname>Hitomi</surname><given-names>Chiharu</given-names></name><xref ref-type="aff" rid="aff3"/><xref ref-type="aff" rid="aff4"/><xref ref-type="fn" rid="con4"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-8579"><name><surname>Adams</surname><given-names>Stephen R</given-names></name><xref ref-type="aff" rid="aff5"/><xref ref-type="fn" rid="con5"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-8580"><name><surname>Getzoff</surname><given-names>Elizabeth D</given-names></name><xref ref-type="aff" rid="aff3"/><xref ref-type="aff" rid="aff4"/><xref ref-type="other" rid="par-5"/><xref ref-type="fn" rid="con6"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" corresp="yes" id="author-7311"><name><surname>Schroeder</surname><given-names>Julian I</given-names></name><xref ref-type="aff" rid="aff1"/><xref ref-type="aff" rid="aff2"/><xref ref-type="corresp" rid="cor1">*</xref><xref ref-type="other" rid="par-1"/><xref ref-type="other" rid="par-2"/><xref ref-type="other" rid="par-3"/><xref ref-type="fn" rid="con7"/><xref ref-type="fn" rid="conf1"/></contrib><aff id="aff1"><institution content-type="dept">Division of Biological Sciences, Cell and Developmental Biology Section</institution>, <institution>University of California, San Diego</institution>, <addr-line><named-content content-type="city">La Jolla</named-content></addr-line>, <country>United States</country></aff><aff id="aff2"><institution content-type="dept">Food and Fuel for the 21st Century</institution>, <institution>University of California, San Diego</institution>, <addr-line><named-content content-type="city">La Jolla</named-content></addr-line>, <country>United States</country></aff><aff id="aff3"><institution content-type="dept">Department of Integrative Structural and Computational Biology</institution>, <institution>The Scripps Research Institute</institution>, <addr-line><named-content content-type="city">La Jolla</named-content></addr-line>, <country>United States</country></aff><aff id="aff4"><institution content-type="dept">The Skaggs Institute for Chemical Biology</institution>, <institution>The Scripps Research Institute</institution>, <addr-line><named-content content-type="city">La Jolla</named-content></addr-line>, <country>United States</country></aff><aff id="aff5"><institution content-type="dept">Department of Pharmacology</institution>, <institution>University of California, San Diego</institution>, <addr-line><named-content content-type="city">La Jolla</named-content></addr-line>, <country>United States</country></aff></contrib-group><contrib-group content-type="section"><contrib contrib-type="editor"><name><surname>Amasino</surname><given-names>Richard</given-names></name><role>Reviewing editor</role><aff><institution>University of Wisconsin</institution>, <country>United States</country></aff></contrib></contrib-group><author-notes><corresp id="cor1"><label>*</label>For correspondence: <email>jischroeder@ucsd.edu</email></corresp><fn fn-type="present-address" id="pa1"><label>†</label><p>Institute of Radiation Breeding, National Institute of Agrobiological Sciences (NIAS), Kamimurata, Japan</p></fn></author-notes><pub-date date-type="pub" publication-format="electronic"><day>15</day><month>04</month><year>2014</year></pub-date><pub-date pub-type="collection"><year>2014</year></pub-date><volume>3</volume><elocation-id>e01739</elocation-id><history><date date-type="received"><day>18</day><month>10</month><year>2013</year></date><date date-type="accepted"><day>07</day><month>03</month><year>2014</year></date></history><permissions><copyright-statement>© 2014, Waadt et al</copyright-statement><copyright-year>2014</copyright-year><copyright-holder>Waadt et al</copyright-holder><license xlink:href="http://creativecommons.org/licenses/by/3.0/"><license-p>This article is distributed under the terms of the <ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution License</ext-link>, which permits unrestricted use and redistribution provided that the original author and source are credited.</license-p></license></permissions><self-uri content-type="pdf" xlink:href="elife01739.pdf"/><related-article ext-link-type="doi" id="ra1" related-article-type="article-reference" xlink:href="10.7554/eLife.01741"/><related-article ext-link-type="doi" id="ra2" related-article-type="commentary" xlink:href="10.7554/eLife.02763"/><abstract><object-id pub-id-type="doi">10.7554/eLife.01739.001</object-id><p>Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration changes in response to environmental cues is essential for understanding ABA action. We have developed ABAleons: ABA-specific optogenetic reporters that instantaneously convert the phytohormone-triggered interaction of ABA receptors with PP2C-type phosphatases to send a fluorescence resonance energy transfer (FRET) signal in response to ABA. We report the design, engineering and use of ABAleons with ABA affinities in the range of 100–600 nM to map ABA concentration changes in plant tissues with spatial and temporal resolution. High ABAleon expression can partially repress Arabidopsis ABA responses. ABAleons report ABA concentration differences in distinct cell types, ABA concentration increases in response to low humidity and NaCl in guard cells and to NaCl and osmotic stress in roots and ABA transport from the hypocotyl to the shoot and root.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.001">http://dx.doi.org/10.7554/eLife.01739.001</ext-link></p></abstract><abstract abstract-type="executive-summary"><object-id pub-id-type="doi">10.7554/eLife.01739.002</object-id><title>eLife digest</title><p>Plants are able to respond to detrimental changes in their environment—when, for example, water becomes scarce or the soil becomes too salty—in ways that minimize stress and damage caused by these changes. Hormones are chemicals that trigger the plant’s response under these circumstances.</p><p>Abscisic acid is the hormone that regulates how plants respond to drought and salt stress and that controls the plant growth in these conditions. In the past, it was possible to measure the average level of this hormone in a given tissue, but not the level in individual cells in a living plant. Moreover, it was difficult to follow directly how abscisic acid moved between the plant cells, tissues or organs.</p><p>Now, Waadt et al. (and independently Jones et al.) have developed tools that can measure the levels of abscisic acid within individual cells in living plants and in real time. The plants were genetically engineered to produce sensor proteins with two properties: they can bind to abscisic acid in a reversible manner, and they contain two ‘tags’ that fluoresce at different wavelengths. Shining light onto the plant at a specific wavelength that is only absorbed by one of the tags actually causes both of the tags on the sensor proteins to fluoresce. However, the sensors fluoresce more at one wavelength when they are bound to abscisic acid, and more at the other wavelength when they are not bound to abscisic acid. Hence, measuring the ratio of these two wavelengths in the light that is given off by the sensor proteins can be used as a measure of the concentration of abscisic acid in a plant cell.</p><p>Waadt et al. developed sensor proteins called ‘ABAleons’, and used one of these to analyze the uptake, distribution and movement of abscisic acid in different tissues in the model plant <italic>Arabidopsis thaliana</italic>. Changes in the level of abscisic acid could be detected at the level of an individual plant cell, and over time scales of fractions of seconds to hours. ABAleons also revealed that the concentration of abscisic acid in guard cells—specialized cells that help stop the loss of water vapor from a leaf—increases when humidity levels are low, or when salt levels are high. Low water levels, or high salt levels, also slowly increased the concentration of abscisic acid in the roots of the plant. Furthermore, Waadt et al. saw that abscisic acid moved long distances from the base of the stem up into the shoot, and down to the root.</p><p>Waadt et al. also report that the ABAleons made plants less responsive to abscisic acid, possibly because binding to the ABAleons reduced the amount of abscisic acid that was available to perform its role as a hormone. The next challenge is to engineer ABAleons that minimize this unwanted side effect, and then go on to use ABAleons to study environmental conditions and proteins involved in plant hormone responses.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.002">http://dx.doi.org/10.7554/eLife.01739.002</ext-link></p></abstract><kwd-group kwd-group-type="author-keywords"><title>Author keywords</title><kwd>plant hormone</kwd><kwd>abscisic acid</kwd><kwd>FRET-based reporter</kwd></kwd-group><kwd-group kwd-group-type="research-organism"><title>Research organism</title><kwd>Arabidopsis</kwd></kwd-group><funding-group><award-group id="par-1"><funding-source><institution-wrap><institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000002</institution-id><institution>National Institutes of Health</institution></institution-wrap></funding-source><award-id>GM060396-ES010337</award-id><principal-award-recipient><name><surname>Schroeder</surname><given-names>Julian I</given-names></name></principal-award-recipient></award-group><award-group id="par-2"><funding-source><institution-wrap><institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000001</institution-id><institution>National Science Foundation</institution></institution-wrap></funding-source><award-id>MCB-0918220</award-id><principal-award-recipient><name><surname>Schroeder</surname><given-names>Julian I</given-names></name></principal-award-recipient></award-group><award-group id="par-3"><funding-source><institution-wrap><institution>Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy</institution></institution-wrap></funding-source><award-id>DE-FG02-03ER15449</award-id><principal-award-recipient><name><surname>Schroeder</surname><given-names>Julian I</given-names></name></principal-award-recipient></award-group><award-group id="par-4"><funding-source><institution-wrap><institution>Alexander von Humboldt-Foundation</institution></institution-wrap></funding-source><award-id>Feodor Lynen Research Fellowship</award-id><principal-award-recipient><name><surname>Waadt</surname><given-names>Rainer</given-names></name></principal-award-recipient></award-group><award-group id="par-5"><funding-source><institution-wrap><institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000001</institution-id><institution>National Science Foundation</institution></institution-wrap></funding-source><award-id>MCB-1330856</award-id><principal-award-recipient><name><surname>Getzoff</surname><given-names>Elizabeth D</given-names></name></principal-award-recipient></award-group><funding-statement>The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.</funding-statement></funding-group><custom-meta-group><custom-meta><meta-name>elife-xml-version</meta-name><meta-value>2</meta-value></custom-meta><custom-meta specific-use="meta-only"><meta-name>Author impact statement</meta-name><meta-value>Fluorescent sensors can track the movement and distribution of the plant hormone abscisic acid in roots and leaves in Arabidopsis.</meta-value></custom-meta></custom-meta-group></article-meta></front><body><sec id="s1" sec-type="intro"><title>Introduction</title><p>Plant hormones control plant growth and development. Knowledge of the locations of hormone synthesis and transport, and the resulting hormone gradients and distributions in plants is important for understanding how plants respond to their environment via hormone signaling and cross talk of hormone and other small molecule signaling pathways (<xref ref-type="bibr" rid="bib30">Hetherington and Woodward, 2003</xref>; <xref ref-type="bibr" rid="bib34">Israelsson et al., 2006</xref>; <xref ref-type="bibr" rid="bib57">Nemhauser et al., 2006</xref>; <xref ref-type="bibr" rid="bib52">Muday et al., 2012</xref>). Among plant hormones, auxin is best characterized in terms of its distribution and transport (<xref ref-type="bibr" rid="bib79">Vanneste and Friml, 2009</xref>), analyzed using reporter constructs for auxin-induced gene expression or protein degradation (<xref ref-type="bibr" rid="bib77">Ulmasov et al., 1997</xref>; <xref ref-type="bibr" rid="bib9">Brunoud et al., 2012</xref>; <xref ref-type="bibr" rid="bib84">Wend et al., 2013</xref>). Reporter genes developed for ABA-induced gene expression (pRD29A/B, pRAB18 and p<italic>At</italic>HB6) are also used (<xref ref-type="bibr" rid="bib45">Lång and Palva, 1992</xref>; <xref ref-type="bibr" rid="bib86">Yamaguchi-Shinozaki and Shinozaki, 1993</xref>; <xref ref-type="bibr" rid="bib32">Ishitani et al., 1997</xref>; <xref ref-type="bibr" rid="bib10">Christmann et al., 2005</xref>; <xref ref-type="bibr" rid="bib40">Kim et al., 2011</xref>; <xref ref-type="bibr" rid="bib14">Duan et al., 2013</xref>). Despite their potential, such promoter-linked reporters respond indirectly and slowly to their respective plant hormone. To unequivocally investigate dynamic models of hormone distribution and dissect the complex functions and interconnection of these signaling molecules, direct plant hormone reporters that act instantaneously and reversibly are essential.</p><p>Optogenetic reporters provide a potential solution. These genetically engineered chromogenic proteins (often fluorescent proteins) respond to a specific environmental change via conformationally linked changes in their spectral properties measurable with optical instruments (<xref ref-type="bibr" rid="bib23">Giepmans et al., 2006</xref>; <xref ref-type="bibr" rid="bib1">Alford et al., 2013</xref>). Such reporters have been developed for a whole palette of molecules and physiochemical processes (<xref ref-type="bibr" rid="bib62">Okumoto et al., 2012</xref>). However, no reporters for direct visualization of any plant hormone have yet been developed.</p><p>During land colonization, plants adopted ABA as a hormone to signal stress due to limited water supply (<xref ref-type="bibr" rid="bib13">Cutler et al., 2010</xref>; <xref ref-type="bibr" rid="bib66">Raghavendra et al., 2010</xref>; <xref ref-type="bibr" rid="bib29">Hauser et al., 2011</xref>). ABA is integrated into a complex signaling network that transcriptionally and post-translationally regulates seed germination, root development and stomatal aperture (<xref ref-type="bibr" rid="bib30">Hetherington and Woodward, 2003</xref>; <xref ref-type="bibr" rid="bib13">Cutler et al., 2010</xref>; <xref ref-type="bibr" rid="bib39">Kim et al., 2010</xref>; <xref ref-type="bibr" rid="bib66">Raghavendra et al., 2010</xref>; <xref ref-type="bibr" rid="bib76">Tanaka et al., 2013</xref>). ABA biosynthesis is a multi-step reaction involving Zeaxanthin epoxidation, isomerization and cleavage to Xanthoxin in the plastid, followed by conversion to abscisic aldehyde and oxidization to ABA in the cytoplasm (<xref ref-type="bibr" rid="bib56">Nambara and Marion-Poll, 2005</xref>). In Arabidopsis, ABA is synthesized primarily in vascular tissues of roots and leaves, in guard cells and in seeds (<xref ref-type="bibr" rid="bib71">Sauter et al., 2001</xref>; <xref ref-type="bibr" rid="bib17">Endo et al., 2008</xref>; <xref ref-type="bibr" rid="bib73">Seo and Koshiba, 2011</xref>; <xref ref-type="bibr" rid="bib4">Bauer et al., 2013</xref>; <xref ref-type="bibr" rid="bib7">Boursiac et al., 2013</xref>). ABA catabolism includes hydroxylation pathways and glucose conjugation leading to less- or inactive compounds (<xref ref-type="bibr" rid="bib56">Nambara and Marion-Poll, 2005</xref>; <xref ref-type="bibr" rid="bib38">Kepka et al., 2011</xref>). ABA-glucose ester is stored in the vacuole and was reported to be rapidly hydrolyzed by β-glucosidases (<xref ref-type="bibr" rid="bib46">Lee et al., 2006</xref>). However, direct measurements of rapid ABA release are missing.</p><p>ABA moves throughout the plant and crosses cell borders as a function of pH. This ‘ionic trap model’ explains the movement, but excludes cellular efflux of ABA due to low apoplastic pH (<xref ref-type="bibr" rid="bib71">Sauter et al., 2001</xref>; <xref ref-type="bibr" rid="bib73">Seo and Koshiba, 2011</xref>; <xref ref-type="bibr" rid="bib7">Boursiac et al., 2013</xref>). Recently identified ABA transporters contribute to ABA export from the vasculature and import into guard cells (<xref ref-type="bibr" rid="bib36">Kang et al., 2010</xref>; <xref ref-type="bibr" rid="bib43">Kuromori et al., 2010</xref>, <xref ref-type="bibr" rid="bib44">2011</xref>; <xref ref-type="bibr" rid="bib37">Kanno et al., 2012</xref>; <xref ref-type="bibr" rid="bib7">Boursiac et al., 2013</xref>). Two non-mutually exclusive current models describe how water limitations in the root induce stomatal closure in the leaf: (1) ABA acts as a chemical signal synthesized in the root and transported to the shoot (<xref ref-type="bibr" rid="bib71">Sauter et al., 2001</xref>; <xref ref-type="bibr" rid="bib85">Wilkinson and Davies, 2002</xref>), and (2) a hydraulic signal from the root induces ABA synthesis in the shoot (<xref ref-type="bibr" rid="bib10">Christmann et al., 2005</xref>, <xref ref-type="bibr" rid="bib11">2007</xref>; <xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>).</p><p>In response to water limitations ABA concentrations increase (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>; <xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>; <xref ref-type="bibr" rid="bib11">Christmann et al., 2007</xref>; <xref ref-type="bibr" rid="bib18">Forcat et al., 2008</xref>; <xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>) and decrease upon stress relief (<xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>; <xref ref-type="bibr" rid="bib17">Endo et al., 2008</xref>). Despite recent progress on ABA synthesis and transport, direct evidence for conditionally triggered changes in local ABA concentrations and time-resolved data for ABA re-distribution <italic>in vivo</italic> are lacking.</p><p>ABA is perceived by members of a protein family designated as PYRABACTIN RESISTANCE 1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR), which in the presence of ABA negatively regulate Clade A TYPE 2C PROTEIN PHOSPHATASES (PP2Cs) (<xref ref-type="bibr" rid="bib48">Ma et al., 2009</xref>; <xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>). Inhibition of PP2Cs enables the activation of SNF1-RELATED KINASES 2 (SnRK2s) (<xref ref-type="bibr" rid="bib19">Fujii et al., 2009</xref>; <xref ref-type="bibr" rid="bib78">Umezawa et al., 2009</xref>; <xref ref-type="bibr" rid="bib80">Vlad et al., 2009</xref>), that target transcription factors, ion channels and NADPH oxidases (<xref ref-type="bibr" rid="bib41">Kobayashi et al., 2005</xref>; <xref ref-type="bibr" rid="bib20">Furihata et al., 2006</xref>; <xref ref-type="bibr" rid="bib21">Geiger et al., 2009</xref>; <xref ref-type="bibr" rid="bib47">Lee et al., 2009</xref>; <xref ref-type="bibr" rid="bib70">Sato et al., 2009</xref>; <xref ref-type="bibr" rid="bib74">Sirichandra et al., 2009</xref>, <xref ref-type="bibr" rid="bib75">2010</xref>; <xref ref-type="bibr" rid="bib8">Brandt et al., 2012</xref>).</p><p>PYR/PYL/RCARs contain an internal ligand-binding pocket flanked by two conserved loops, the ‘Pro-cap/gate’ and the ‘Leu-lock/latch’ (<xref ref-type="bibr" rid="bib49">Melcher et al., 2009</xref>; <xref ref-type="bibr" rid="bib58">Nishimura et al., 2009</xref>; <xref ref-type="bibr" rid="bib68">Santiago et al., 2009a</xref>). ABA binding triggers these loops to rearrange, closing the lid over ABA. The conformational change and rearranged protein surface favors PP2C binding over receptor dimerization (<xref ref-type="bibr" rid="bib49">Melcher et al., 2009</xref>; <xref ref-type="bibr" rid="bib58">Nishimura et al., 2009</xref>; <xref ref-type="bibr" rid="bib87">Yin et al., 2009</xref>). In the resultant ABA receptor–phosphatase complex, a conserved Trp residue from the PP2C inserts between the ‘Pro-cap/gate’ and the ‘Leu-lock/latch’ to further enclose the ABA (<xref ref-type="bibr" rid="bib49">Melcher et al., 2009</xref>; <xref ref-type="bibr" rid="bib50">Miyazono et al., 2009</xref>; <xref ref-type="bibr" rid="bib87">Yin et al., 2009</xref>).</p><p>Here, we report the design, development and application of optogenetic FRET-based reporters for ABA (ABAleons), in which covalently attached PYR1 and the PP2C ABI1 are modulated upon ABA binding, triggering changes in fluorescence emission from attached fluorescent proteins. ABAleons can affect ABA responses at high concentrations and enable the analysis of time-dependent changes in ABA concentration, distribution and transport in live plants with appropriate resolution to monitor endogenous ABA concentration changes.</p></sec><sec id="s2" sec-type="results"><title>Results</title><sec id="s2-1"><title>ABAleon design and <italic>in vitro</italic> characterization</title><p>Based on structural analyses of PYR1 (<xref ref-type="bibr" rid="bib58">Nishimura et al., 2009</xref>) and the PYL1-ABA-ABI1 complex (<xref ref-type="bibr" rid="bib50">Miyazono et al., 2009</xref>) and a FRET cassette consisting of the fluorescent proteins mTurquoise (<xref ref-type="bibr" rid="bib24">Goedhart et al., 2010</xref>) and Venus circularly permutated at amino acid 173 (cpVenus173; <xref ref-type="bibr" rid="bib53">Nagai et al., 2004</xref>; <xref ref-type="bibr" rid="bib65">Piljić et al., 2011</xref>), FRET-based reporters for ABA, named ABAleons, were designed (<xref ref-type="fig" rid="fig1">Figure 1A</xref>). Full length PYR1 and ABI1 truncated at amino acid S125 (<sub>ΔN</sub>ABI1) were fused via a flexible ASGGSGGTS(GGGGS)<sub>4</sub>-linker (<xref ref-type="bibr" rid="bib3">Arai et al., 2004</xref>; <xref ref-type="bibr" rid="bib53">Nagai et al., 2004</xref>) and inserted into the mTurquoise-cpVenus173 FRET cassette using short two amino acid GP- and PG-linkers (<xref ref-type="bibr" rid="bib65">Piljić et al., 2011</xref>) resulting in the FRET reporter ABAleon1.1 (<xref ref-type="fig" rid="fig1">Figure 1A</xref>). Due to the long flexible linker between PYR1 and <sub>ΔN</sub>ABI1 (> 120 Å; <xref ref-type="bibr" rid="bib3">Arai et al., 2004</xref>; <xref ref-type="fig" rid="fig1">Figure 1A</xref>), <sub>ΔN</sub>ABI1 might be free for substrate access in the ABA unbound conformation. Therefore the wild type ABAleon1.1 was mutated to abolish phosphatase activity of ABI1 by introducing a D413L mutation in the catalytic metal-binding site (ABAleon2.1; <ext-link ext-link-type="uri" xlink:href="http://www.uniprot.org/uniprot/P49597">http://www.uniprot.org/uniprot/P49597</ext-link>) (<xref ref-type="fig" rid="fig1">Figure 1A</xref>).<fig-group><fig id="fig1" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.003</object-id><label>Figure 1.</label><caption><title><italic>In vitro</italic> characterization of ABAleons.</title><p>(<bold>A</bold>) mTurquoise (cyan) is fused through a GP-linker to PYR1 (gold), which is separated by a flexible ASGGSGGTS(GGGGS)<sub>4</sub> linker from <sub>ΔN</sub>ABI1 (green) fused to cpVenus173 (yellow) through a PG linker. Structural features of the PYR1-<sub>ΔN</sub>ABI1 complex including ABA (blue and red balls), ABI1 D413 (purple ball) and loops controlling access to the ABA binding site are highlighted. Dashed lines indicate linkers and unresolved structures. (<bold>B</bold>) Without ABA, ABAleon flexibility enables FRET from mTurquoise (mT) to cpVenus173 (cpV173). ABA triggered PYR1-<sub>ΔN</sub>ABI1 binding increases the distance or orientation between the fluorescent probes, thereby reducing FRET efficiency. (<bold>C</bold> and <bold>D</bold>) Normalized (nu) emission spectra of (<bold>C</bold>) ABAleon1.1 and (<bold>D</bold>) ABAleon2.1 in absence (unbound) and in presence (bound) of ABA with indicated dynamic range (DR). (<bold>E</bold>) Emission ratios and (<bold>F</bold>) ΔR/ΔR<sub>max</sub> plotted against increasing [ABA], with indicated ABA affinity K′<sub>d</sub> of each ABAleon calculated from the respective plot. (<bold>G</bold>) Time-dependent normalized emission ratios of ABAleon2.1 in response to 0 and 1 µM ABA. (<bold>H</bold>) Phosphatase activity assays of equimolar PYR1 and <sub>ΔN</sub>ABI1 combinations and indicated ABAleons in presence of 0 and 5 µM ABA (mean ± SD, n = 4).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.003">http://dx.doi.org/10.7554/eLife.01739.003</ext-link></p></caption><graphic xlink:href="elife01739f001"/></fig><fig id="fig1s1" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.004</object-id><label>Figure 1—figure supplement 1.</label><caption><title>ABA does not affect ABAleon absorbance and ABAleon emission is stable at physiological pH conditions.</title><p>(<bold>A</bold>) Normalized absorbance spectrum of ABAleon2.1 in absence (cyan) and in presence of 100 µM ABA (yellow). (<bold>B</bold>) pH titration of ABAleon1.1 emission ratios (left scale) in absence (cyan) and in presence of 10 µM ABA (yellow). Curves were fitted by a four parameter Hill equation and ratio change (red, right scale) was calculated by subtraction of the 10 µM ABA from the 0 µM ABA curve. Note the dramatic ABA-independent ratio change of ABAleon1.1 below pH 6.2. However in the physiological range (pH 7.2–7.8) ABAleon1.1 emission is stable.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.004">http://dx.doi.org/10.7554/eLife.01739.004</ext-link></p></caption><graphic xlink:href="elife01739fs001"/></fig></fig-group></p><p><italic>In vitro</italic> application of ABA had no impact on ABAleon2.1 absorbance (<xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1A</xref>). However, analyses of fluorescence emission spectra after application of ABA revealed an increase in mTurquoise emission (peak at 476 nm) and a decrease of cpVenus173 emission (peak at 527 nm), indicating that the distance between both fluorescent proteins is increased, or their orientation to each other is changed by the ABA-dependent interaction of PYR1 and <sub>ΔN</sub>ABI1 (<xref ref-type="fig" rid="fig1">Figure 1B–D</xref>). Apparent ABA affinities were calculated by curve fitting of ABA-dependent emission ratio plots (<xref ref-type="fig" rid="fig1">Figure 1E</xref>) or from fits of the ABA-dependent ratio change (ΔR) relative to the maximum ratio change (ΔR<sub>max</sub>) (<xref ref-type="fig" rid="fig1">Figure 1F</xref>). For ABAleon1.1 a dynamic range of ∼ 15 % was recorded with an apparent ABA affinity K′<sub>d</sub> of ∼ 300 nM (<xref ref-type="fig" rid="fig1">Figure 1C,E,F</xref>). Moreover, ABA-induced emission ratio changes of ABAleon1.1 were stable in the range of physiological pH conditions (e.g., pH 6.6–8.2; <xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1B</xref>). ABAleon2.1 exhibited a dynamic range of ∼ 9 % and a K′<sub>d</sub> of ∼ 100 nM (<xref ref-type="fig" rid="fig1">Figure 1D–F</xref>). In plate reader-based analyses, application of ABA rapidly and clearly induced emission ratio changes of ∼ 8 % when analyzing ABAleon2.1 at 1 µM ABA (<xref ref-type="fig" rid="fig1">Figure 1G</xref>). ABAleon1.1 exhibited phosphatase activity comparable to PYR1 and <sub>ΔN</sub>ABI1 when combined in a 1:1 molar ratio (<xref ref-type="fig" rid="fig1">Figure 1H</xref>). In the presence of 5 µM ABA phosphatase activity was inhibited to 50 % of initial activity (<xref ref-type="fig" rid="fig1">Figure 1H</xref>; <xref ref-type="bibr" rid="bib48">Ma et al., 2009</xref>; <xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>; <xref ref-type="bibr" rid="bib69">Santiago et al., 2009b</xref>). However, the predicted phosphatase inactive ABI1<sub>D413L</sub> mutation in ABAleon2.1 enabled the design of an ABA-reporter without detectable phosphatase activity (<xref ref-type="fig" rid="fig1">Figure 1H</xref>), which was considered to be preferable for use in plants.</p></sec><sec id="s2-2"><title>Application of ABA induces ABAleon2.1 emission ratio changes in Arabidopsis</title><p>ABAleon2.1 was transformed into the Arabidopsis Columbia 0 accession (Col-0) to determine whether it can detect ABA level changes <italic>in planta</italic>. In a macroscopic view ABAleon2.1 emission ratio maps were recorded from 5 day-old seedlings before (<xref ref-type="fig" rid="fig2">Figure 2A</xref>) or 2 h after ABA application (<xref ref-type="fig" rid="fig2">Figure 2B</xref>). Emission ratios were also recorded from guard cells of 33-day-old soil-grown plants (<xref ref-type="fig" rid="fig2">Figure 2C</xref>). As indicated in the color code of the calibration bar (<xref ref-type="fig" rid="fig2">Figure 2</xref>), low ABAleon2.1 ratios (blue) indicate high ABA concentrations and high ratios (red) indicate low ABA concentrations. Comparison of the emission ratio maps before and after ABA application revealed visible ABA uptake into the entire seedling (<xref ref-type="fig" rid="fig2">Figure 2A,B</xref>). However the most prominent ratio changes were observed in the root elongation- and early maturation zone, where the yellow-coded regions showed an ABA concentration increase, which is indicated by the yellow-to-blue color shift (<xref ref-type="fig" rid="fig2">Figure 2A,B</xref>). Visible ratio changes were also observed in the lower hypocotyl. Here an upward-directed ABA accumulation was detected (<xref ref-type="fig" rid="fig2">Figure 2A,B</xref>).<fig-group><fig id="fig2" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.005</object-id><label>Figure 2.</label><caption><title>ABA-induced ABAleon2.1 responses in whole seedlings.</title><p>(<bold>A</bold> and <bold>B</bold>) Manually assembled ABAleon2.1 ratio images (<bold>A</bold>) before and (<bold>B</bold>) 2 h after application of 50 µM ABA. (<bold>C</bold>) Ratio image of untreated guard cells from lower epidermis of 33-day-old soil grown plants. Images were calibrated to the indicated calibration bar. Blue colors indicate low ABAleon2.1 emission ratios, corresponding to high ABA concentrations, and red colors indicate high ABAleon2.1 emission ratios corresponding to low ABA concentrations. Shown is a representative of four experiments.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.005">http://dx.doi.org/10.7554/eLife.01739.005</ext-link></p></caption><graphic xlink:href="elife01739f002"/></fig><fig id="fig2s1" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.006</object-id><label>Figure 2—figure supplement 1.</label><caption><title>pRAB18-GFP expression in guard cells.</title><p>(<bold>A</bold>–<bold>C</bold>) Confocal images of pRAB18-GFP expression in the intact lower epidermis of 27-day-old plants show highest expression (GFP emission) in guard cells. (<bold>A</bold>) Representative image of plants grown at 70 % relative humidity (RH) conditions, (<bold>B</bold>) 4 h after leaf floating in 50 µM ABA and (<bold>C</bold>) 2 days after plant transfer to 25 % RH conditions. Note that pRAB18-GFP expression appears in the epidermal cells only after ABA application (<bold>B</bold>). (<bold>D</bold>) Images were calibrated to background fluorescence (lowest value) and to the maximum value recorded in guard cells (highest value). (<bold>E</bold>) Quantified pRAB18-GFP emission in guard cells from the same analyses as in (<bold>A</bold>–<bold>D</bold>) (means ± SEM, n = 3 with ≥ 34 guard cells/n).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.006">http://dx.doi.org/10.7554/eLife.01739.006</ext-link></p></caption><graphic xlink:href="elife01739fs002"/></fig></fig-group></p><p>ABAleon2.1 emission ratios in guard cells were low (<xref ref-type="fig" rid="fig2">Figure 2C</xref>, blue), indicating elevated ABA concentrations under the imposed conditions. High ABA concentrations in guard cells were consistent with the constitutive guard cell expression of the ABA-induced reporter pRAB18-GFP when plants were grown at 70 % relative humidity (<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1A</xref>). Expression of pRAB18-GFP was further induced by ABA (<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1B</xref>), however with stronger induction 2 days after transfer to 25 % relative humidity (<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1C,E</xref>).</p><p>ABA-induced ABAleon2.1 responses were then analyzed with higher time- and spatial resolution in guard cells of 45-day-old plants (<xref ref-type="fig" rid="fig3">Figure 3A–C</xref>) and in three differentially color-coded regions of the hypocotyl (<xref ref-type="fig" rid="fig3">Figure 3D–F</xref>), root differentiation–(<xref ref-type="fig" rid="fig3">Figure 3G–I</xref>), root maturation–(<xref ref-type="fig" rid="fig3">Figure 3J–L</xref>) and root elongation-zone (<xref ref-type="fig" rid="fig3">Figure 3M–O</xref>) of 5-day-old seedlings. Application of ABA induced increases in mTurquoise (<xref ref-type="fig" rid="fig3">Figure 3A,D,G,J,M</xref>, mT, solid lines) and decreases in cpVenus173 emission (<xref ref-type="fig" rid="fig3">Figure 3D,G,J,M</xref>, cpV, dashed lines), resulting in an up to 12 % decrease in the emission ratios (<xref ref-type="fig" rid="fig3">Figure 3B,E,H,K,N</xref>). The ABA-induced ABAleon2.1 emission ratio changes indicate increases in the ABA concentration in all investigated Arabidopsis tissues. These <italic>in planta</italic> analyses were consistent with <italic>in vitro</italic> analyses (<xref ref-type="fig" rid="fig1">Figure 1E,G</xref>). The ABA-induced ABAleon2.1 ratio changes in guard cells (3–6 %; <xref ref-type="fig" rid="fig3">Figure 3B</xref>) and in the root differentiation zone (6 %; <xref ref-type="fig" rid="fig3">Figure 3H</xref>) were low compared to changes in the hypocotyl and lower root tissues (9–12 %; <xref ref-type="fig" rid="fig3">Figure 3E,K,N</xref>), consistent with data indicating elevated ABA concentrations prior to ABA application (<xref ref-type="fig" rid="fig2">Figure 2A,C</xref>). While ABA uptake into guard cells (<xref ref-type="fig" rid="fig3">Figure 3B</xref>) and into the root occurred simultaneously (<xref ref-type="other" rid="video1">Video 1</xref>) in all three analyzed regions (<xref ref-type="fig" rid="fig3">Figure 3H,K,N</xref>), a delay in the ABAleon2.1 response was observed in the hypocotyl (<xref ref-type="fig" rid="fig3">Figure 3E</xref>; <xref ref-type="other" rid="video1">Video 1</xref>). These data suggest a directional ‘wave-like’ ABA transport in the hypocotyl, which was also indicated in the ratio images (<xref ref-type="fig" rid="fig3">Figure 3F</xref>, <xref ref-type="other" rid="video1">Video 1</xref>). To describe the ABA transport in the hypocotyl more quantitatively, ABAleon2.1 response curves of all three analyzed regions were fitted by a four parameter logistic curve <inline-formula><mml:math id="inf1"><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mfrac><mml:mi>t</mml:mi><mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:mfrac></mml:mrow></mml:math></inline-formula>. From these fits the t<sub>1/2</sub> values measure the time point when ABAleon2.1 is half-saturated. These values were used to calculate the delay in ABAleon2.1 responses between the analyzed regions which is a measure for the speed of ABA transport. From three independent experiments the rate of ABA transport in the hypocotyl was calculated as 16.4 ± 0.8 µm/min.<fig-group><fig id="fig3" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.007</object-id><label>Figure 3.</label><caption><title>ABA-induced ABAleon2.1 responses in Arabidopsis tissues.</title><p>Time-resolved ABAleon2.1 responses to 10 µM ABA in (<bold>A</bold>–<bold>C</bold>) guard cells of 45-day-old plants and (<bold>D</bold>–<bold>F</bold>) the hypocotyl, (<bold>G</bold>–<bold>I</bold>) the root differentiation-, (<bold>J</bold>–<bold>L</bold>) maturation- and (<bold>M</bold>–<bold>O</bold>) elongation-zone of 5-day-old seedlings. (<bold>A</bold>, <bold>D</bold>, <bold>G</bold>, <bold>J</bold>, <bold>M</bold>) Time course of mTurquoise (mT, solid lines) and cpVenus173 emission (cpV, dashed lines) and (<bold>B</bold>, <bold>E</bold>, <bold>H</bold>, <bold>K</bold>, <bold>N</bold>) the corresponding normalized emission ratios colored according to the analyzed regions boxed in the in initial t = 0 min images (<bold>C</bold>, <bold>F</bold>, <bold>I</bold>, <bold>L</bold>, <bold>O</bold>). Each analysis is a representative of 3–4 experiments. Note, that there is a slight sample drift, which causes cpVenus173 emission increases in (<bold>A</bold>).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.007">http://dx.doi.org/10.7554/eLife.01739.007</ext-link></p></caption><graphic xlink:href="elife01739f003"/></fig><fig id="fig3s1" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.008</object-id><label>Figure 3—figure supplement 1.</label><caption><title>ABAleon2.1 but not the empty FRET cassette responds specifically to ABA.</title><p>Time-resolved responses of ABAleon2.1 in (<bold>A</bold>–<bold>C</bold>) the hypocotyl and (<bold>D</bold>–<bold>F</bold>) the root maturation zone, and of (<bold>G</bold>–<bold>I</bold>) the empty FRET cassette in the hypocotyl. (<bold>A</bold>, <bold>D</bold>, <bold>G</bold>) Time course of mTurquoise (solid lines) and cpVenus173 emission (dashed lines) and (<bold>B</bold>, <bold>E</bold>, <bold>H</bold>) the respective normalized emission ratios colored according to the analyzed regions (blue, yellow and red boxes) given in the t = 0 min ratio images (<bold>C</bold>, <bold>F</bold>, <bold>I</bold>). (<bold>C</bold>, <bold>F</bold>, <bold>I</bold>) Emission ratio images from indicated time points after solvent control (0.05 % EtOH), buffer or ABA application calibrated to the scale given in the final ratio images. Shown are representative analyses of one to three experiments.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.008">http://dx.doi.org/10.7554/eLife.01739.008</ext-link></p></caption><graphic xlink:href="elife01739fs003"/></fig></fig-group><media content-type="glencoe play-in-place height-250 width-310" id="video1" mime-subtype="mp4" mimetype="video" xlink:href="elife01739v001.mp4"><object-id pub-id-type="doi">10.7554/eLife.01739.009</object-id><label>Video 1.</label><caption><title>10 µM ABA-induced ABAleon2.1 responses in Arabidopsis.</title><p>Video of 10 µM ABA-induced ABAleon2.1 responses in (<bold>A</bold>) guard cells, (<bold>B</bold>) the hypocotyl, (<bold>C</bold>) the root maturation- and (<bold>D</bold>) elongation-zone. ABA was applied at timepoint 00:00:00 of the indicated timescale. Single videos represent data of analyses in <xref ref-type="fig" rid="fig3">Figure 3</xref>. Emission ratio changes to blue color indicate ABA concentration increase. (<bold>B</bold>) Emission ratio changes in the hypocotyl propagate gradually from the hypocotyl base towards the shoot.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.009">http://dx.doi.org/10.7554/eLife.01739.009</ext-link></p></caption></media></p><p>As ABA was dissolved in EtOH, responses to EtOH as solvent control were analyzed in the hypocotyl (<xref ref-type="fig" rid="fig3s1">Figure 3—figure supplement 1A–C</xref>) and the root maturation zone (<xref ref-type="fig" rid="fig3s1">Figure 3—figure supplement 1D–F</xref>). These treatments did not induce measurable emission ratio changes of ABAleon2.1 (<xref ref-type="fig" rid="fig3s1">Figure 3—figure supplement 1B,E</xref>). In contrast, subsequent application of ABA induced ABAleon2.1 emission ratio changes similar to previous data (<xref ref-type="fig" rid="fig3">Figure 3E,K</xref>, <xref ref-type="fig" rid="fig3s1">Figure 3—figure supplement 1B,E</xref>). In control seedlings expressing only the empty FRET-cassette no response to ABA was detected (<xref ref-type="fig" rid="fig3s1">Figure 3—figure supplement 1G–I</xref>). These data support, that PYR1-<sub>ΔN</sub>ABI1<sub>D413L</sub> incorporated in ABAleon2.1 (<xref ref-type="fig" rid="fig1">Figure 1A</xref>) are responsible for the ABA-induced emission ratio changes in Arabidopsis. Taken together, these data clearly demonstrate the direct and instantaneous ABA detection by ABAleon2.1 in various tissues and the visualization of ABA transport <italic>in planta</italic>.</p></sec><sec id="s2-3"><title>Accelerated ABA-induced ABAleon2.1 responses in roots of an ABA receptor quadruple mutant</title><p>ABAleon2.1 was transformed into a PYR/PYL/RCAR ABA receptor quadruple mutant <italic>pyr1-1</italic>/<italic>pyl1-1</italic>/<italic>pyl2-1</italic>/<italic>pyl4-1</italic> (<italic>pyl4ple</italic>; <xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>; <xref ref-type="bibr" rid="bib59">Nishimura et al., 2010</xref>). ABA response curves of Col-0 wild type (<xref ref-type="fig" rid="fig4">Figure 4A</xref>) and <italic>pyl4ple</italic> (<xref ref-type="fig" rid="fig4">Figure 4B</xref>) were fitted by a four parameter logistic curve using data of four single measurements (<xref ref-type="fig" rid="fig4">Figure 4A,B</xref>) or the combined datasets (<xref ref-type="fig" rid="fig4">Figure 4C</xref>). Data show that in the <italic>pyl4ple</italic> mutant ABAleon2.1 exhibited a faster response to 10 µM ABA in the root maturation zone when compared to Col-0 wild type (<xref ref-type="fig" rid="fig4">Figure 4A–C</xref>). This finding is also reflected in the t<sub>1/2</sub> values (<xref ref-type="fig" rid="fig4">Figure 4D</xref>). Half saturation of ABAleon2.1 was reached 16 min after ABA application in Col-0, while this appeared within 7 min in the <italic>pyl4ple</italic> mutant (<xref ref-type="fig" rid="fig4">Figure 4C,D</xref>).<fig id="fig4" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.010</object-id><label>Figure 4.</label><caption><title>Accelerated ABAleon2.1 responses in roots of the <italic>pyl4ple</italic> mutant.</title><p>Normalized 10 µM ABA-induced ABAleon2.1 emission ratio changes in the root maturation zone of Col-0 (<bold>A</bold>, <bold>C</bold> cyan line) and <italic>pyr1-1</italic>/<italic>pyl1-1</italic>/<italic>pyl2-1</italic>/<italic>pyl4-1</italic> (<italic>pyl4ple</italic>) (<bold>B</bold>, <bold>C</bold> yellow line). (<bold>A</bold> and <bold>B</bold>) Data points from single measurements fitted by the respective four parameter logistic curve. (<bold>C</bold>) Combined data from four experiments in (<bold>A</bold> and <bold>B</bold>) fitted by the respective four parameter logistic curve. (<bold>D</bold>) t<sub>1/2</sub> values (means ± SEM, n = 4) calculated from the fitted curves in (<bold>A</bold> and <bold>B</bold>).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.010">http://dx.doi.org/10.7554/eLife.01739.010</ext-link></p></caption><graphic xlink:href="elife01739f004"/></fig></p></sec><sec id="s2-4"><title>Arabidopsis plants expressing ABAleon2.1 are ABA hyposensitive</title><p>To investigate whether ABAleon2.1 might affect ABA responses in general, two ABAleon2.1 lines (line 3 and line 10) were compared to Col-0 wild type, YFP-PYR1 and <italic>abi1-3</italic>/YFP-ABI1 (<xref ref-type="bibr" rid="bib59">Nishimura et al., 2010</xref>) over-expression lines. Analyses of the cpVenus173/YFP fluorescence emissions of the investigated lines indicated, that ABAleon2.1 (line 3) exhibited a ∼ fivefold higher fluorescence emission (expression) when compared to ABAleon2.1 (line 10) (<xref ref-type="fig" rid="fig5">Figure 5A</xref>) while emission of YFP-ABI1 was ∼ 7 % compared to YFP-PYR1 (<xref ref-type="fig" rid="fig5">Figure 5A</xref>).<fig id="fig5" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.011</object-id><label>Figure 5.</label><caption><title>ABAleon2.1-expressing plants show an ABA hyposensitivity.</title><p>From left to right, Col-0 wild type, ABAleon2.1 (line 3), ABAleon2.1 (line 10), YFP-PYR1 and <italic>abi1-3</italic>/YFP-ABI1. (<bold>A</bold>) Analyses of cpVenus173/YFP fluorescence emission in the leaf epidermis. Numerical fluorescence intensity values in the images represent means ± SEM of n = 4 images. (<bold>B</bold> and <bold>C</bold>) 7-day-old seedlings germinated and grown on 0.5 MS media supplemented with (<bold>B</bold>) 0 and (<bold>C</bold>) 0.8 µM ABA. (<bold>D</bold> and <bold>E</bold>) 9-day-old seedlings 5 days after transfer to 0.5 MS media supplemented with (<bold>D</bold>) 0 and (<bold>E</bold>) 10 µM ABA. (<bold>F</bold>–<bold>H</bold>) 7 day time course of (<bold>F</bold> and <bold>G</bold>) seed germination and (<bold>H</bold>) cotyledon expansion in presence of (<bold>F</bold>) 0 and (<bold>G</bold> and <bold>H</bold>) 0.8 µM ABA normalized to the seed count of each replicate (means ± SEM, n = 4 technical replicates with 49 seeds/n). (<bold>I</bold>) Fresh weight of seedlings from (<bold>D</bold> and <bold>E</bold>) normalized to the 0 µM ABA control conditions (means ± SEM, n = 5 technical replicates with seven seedlings/n). (<bold>J</bold>) Stomatal aperture of 20-23-day old seedlings exposed to 10 µM ABA normalized to the 0 µM ABA control conditions (means ± SEM, n = 3 with ≥ 24 stomata/n).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.011">http://dx.doi.org/10.7554/eLife.01739.011</ext-link></p></caption><graphic xlink:href="elife01739f005"/></fig></p><p>In seed germination (<xref ref-type="fig" rid="fig5">Figure 5F,G</xref>) and cotyledon expansion assays (<xref ref-type="fig" rid="fig5">Figure 5B,C,H</xref>) ABAleon2.1 lines were hyposensitive to 0.8 µM ABA when compared to Col-0 wild type and YFP-PYR1. However, the ABAleon2.1 lines exhibited a less pronounced ABA hypersensitivity when compared to <italic>abi1-3</italic>/YFP-ABI1 (<xref ref-type="fig" rid="fig5">Figure 5G,H</xref>). Interestingly, the degree of ABA hyposensitivity of both ABAleon2.1 lines correlated with ABAleon2.1 expression levels (fluorescence emission), as the stronger expressing line 3 exhibited a reduced ABA sensitivity when compared to the lower expressing line 10 (<xref ref-type="fig" rid="fig5">Figure 5</xref>).</p><p>In seedling assays 10 µM ABA inhibited growth of all investigated lines (<xref ref-type="fig" rid="fig5">Figure 5D,E,I</xref>). Fresh weight of ABAleon2.1 and <italic>abi1-3</italic>/YFP-ABI1 plants, when grown on media supplemented with 10 µM ABA, was less reduced compared to Col-0 wild type (<xref ref-type="fig" rid="fig5">Figure 5I</xref>). Again, the degree of ABA sensitivity of the ABAleon2.1 lines correlated with ABAleon2.1 expression levels (<xref ref-type="fig" rid="fig5">Figure 5A,I</xref>). Interestingly, growth and root length of YFP-PYR1 plants was drastically reduced, when grown on 10 µM ABA media (<xref ref-type="fig" rid="fig5">Figure 5D,E,I</xref>), suggesting a strong ABA hypersensitivity when over-expressing this receptor.</p><p>In ABA-induced stomatal closure assays ABA sensitivity of ABAleon2.1 lines was comparable to Col-0 wild type responses (<xref ref-type="fig" rid="fig5">Figure 5J</xref>), suggesting potential tissue or cell specific effects of ABAleon2.1 on ABA responses, which may be linked to a higher basal ABA concentration in these cells (<xref ref-type="fig" rid="fig2">Figure 2C</xref>, <xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1</xref>). Taken together, ABAleon2.1 plants exhibit a reduced ABA sensitivity in seed germination and seedling growth which correlated with ABAleon2.1 expression levels.</p></sec><sec id="s2-5"><title>Visualization of long-distance ABA transport</title><p>To study long-distance ABA transport, modeling clay was placed into the middle of each imaging chamber to generate two isolated chambers (<xref ref-type="fig" rid="fig6">Figure 6A</xref>). Seedlings were placed such that the hypocotyl base and root differentiation zone laid over the isolating modeling clay, which isolated the shoot (top chamber) from the root (bottom chamber). Ratio images of the shoot/upper hypocotyl (<xref ref-type="fig" rid="fig6">Figure 6E</xref>) and the root maturation zone (<xref ref-type="fig" rid="fig6">Figure 6F</xref>) were recorded before and after application of 50 µM ABA. Three regions in the upper hypocotyl and the root maturation zone, indicated by boxes in the t = 0 min ratio images (<xref ref-type="fig" rid="fig6">Figure 6E,F</xref>), were used to measure time dependent ratio changes (<xref ref-type="fig" rid="fig6">Figure 6B</xref>). Upon ABA application to the upper chamber, ABA concentrations increased in the shoot/upper hypocotyl, as seen by an immediate decrease of the ABAleon2.1 emission ratios (<xref ref-type="fig" rid="fig6">Figure 6B,E</xref>). In the root maturation zone a decrease in the emission ratio was observed starting ∼ 90 min after the treatment (<xref ref-type="fig" rid="fig6">Figure 6B,F</xref>).<fig-group><fig id="fig6" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.012</object-id><label>Figure 6.</label><caption><title>Visualization of long-distance ABA transport.</title><p>(<bold>A</bold>) ABAleon2.1 seedlings were transferred to microscope dishes, which were divided into two isolated experimental chambers by a horizontal block of modeling clay. (<bold>B</bold>, <bold>E</bold>, <bold>F</bold>) Shoot-to-root, (<bold>C</bold>, <bold>G</bold>, <bold>H</bold>) hypocotyl-to-root and (<bold>D</bold>, <bold>I</bold>, <bold>J</bold>) root-to-hypocotyl ABA transport after application of 50 µM ABA. (<bold>B</bold>–<bold>D</bold>) Time-dependent normalized emission ratios (means ± SEM, n = 3) in the hypocotyl (cyan) and root (yellow) were quantified in three regions indicated by boxes in the initial images (<bold>E</bold>–<bold>J</bold>). The calibration bar in the final t = 180 min image indicates the scale of the emission ratios. Decreasing ratios indicate ABA accumulation. Shown are representative analyses of 3–4 experiments.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.012">http://dx.doi.org/10.7554/eLife.01739.012</ext-link></p></caption><graphic xlink:href="elife01739f006"/></fig><fig id="fig6s1" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.013</object-id><label>Figure 6—figure supplement 1.</label><caption><title>Solvent control for long-distance ABA transport.</title><p>(<bold>A</bold>) Time-dependent normalized ABAleon2.1 emission ratios (mean ± SEM, n = 3) in the hypocotyl (cyan) and root (yellow) in response to 0.05 % EtOH as solvent control for ABA were quantified in three regions indicated by boxes in the initial images of (<bold>B</bold> and <bold>C</bold>). The calibration bar in the t = 180 min image indicates the scale of the emission ratios. Shown are representative analyses of four experiments.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.013">http://dx.doi.org/10.7554/eLife.01739.013</ext-link></p></caption><graphic xlink:href="elife01739fs004"/></fig></fig-group></p><p>In additional experiments seedlings were placed such that the hypocotyl and root differentiation zone were located in the top chamber and the root maturation zone in the bottom chamber (<xref ref-type="fig" rid="fig6">Figure 6A</xref>, left seedling). In control experiments where 0.05 % EtOH as solvent control was added to the top chamber, no emission ratio changes were detected in the hypocotyl and the root maturation zone, indicating that in these experimental conditions endogenous ABA concentrations were stable (<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1</xref>). However, ABA application to the top chamber induced an ABAleon2.1 emission ratio change in the hypocotyl after 30 min which did not drastically change for the remaining time period (<xref ref-type="fig" rid="fig6">Figure 6C,G</xref>). ABA application to the hypocotyl (top chamber) led to a gradual decrease of the ABAleon2.1 emission ratios in the root maturation zone (bottom chamber; <xref ref-type="fig" rid="fig6">Figure 6C,H</xref>), providing evidence that ABA is actively transported to the root maturation zone. When ABA was applied to the root maturation zone (bottom chamber), ABAleon2.1 emission ratios rapidly dropped, indicating ABA uptake into the root (<xref ref-type="fig" rid="fig6">Figure 6D,J</xref>). However, ABA was not transported upwards to the hypocotyl (top chamber) within 180 min under the imposed conditions (<xref ref-type="fig" rid="fig6">Figure 6D,I</xref>). The above data indicate a shoot to root ABA transport (<xref ref-type="fig" rid="fig6">Figure 6B,C</xref>). A root to shoot ABA transport could not be detected within 180 min after ABA application (<xref ref-type="fig" rid="fig6">Figure 6D</xref>) possibly due to low transpiration when whole seedlings were perfused with buffer solution (‘Materials and methods and Discussion’).</p></sec><sec id="s2-6"><title>Mutations in PYR1 modulate ABA affinity and stereospecificity of ABAleons</title><p>Based on structural models (<xref ref-type="fig" rid="fig7">Figure 7A</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1A</xref>), mutations in PYR1 and <sub>ΔN</sub>ABI1<sub>D413L</sub> of ABAleon2.1 were selected that potentially reduce but not abolish PYR1-<sub>ΔN</sub>ABI1<sub>D413L</sub> interaction (<xref ref-type="bibr" rid="bib49">Melcher et al., 2009</xref>; <xref ref-type="bibr" rid="bib50">Miyazono et al., 2009</xref>; <xref ref-type="bibr" rid="bib51">Mosquna et al., 2011</xref>; <xref ref-type="bibr" rid="bib89">Zhang et al., 2012</xref>) resulting in the new constructs ABAleon2.11–ABAleon2.17 (<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1A</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>). In addition shorter linker versions between PYR1 and <sub>ΔN</sub>ABI1<sub>D413L</sub> were generated (ABAleon2.2 and ABAleon2.3; <xref ref-type="table" rid="tbl1">Table 1</xref>). Recombinant empty FRET control (F3) and all ABAleon versions were purified (<xref ref-type="fig" rid="fig7s2">Figure 7—figure supplement 2</xref>) and biochemical characteristics of these proteins are provided in <xref ref-type="table" rid="tbl1">Table 1</xref>.<fig-group><fig id="fig7" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.014</object-id><label>Figure 7.</label><caption><title><italic>In vitro</italic> analyses of ABAleon2.1 mutants.</title><p>(<bold>A</bold>) Structural model of the PYR1(gold)-ABA(purple)-ABI1(green) complex, indicating mutations in ABAleon2.1 that were analyzed in (<bold>B</bold>–<bold>G</bold>): H60P monomer-inducing, V83H in Pro-Cap and H115A in Leu-Lock of PYR1 (grey balls) and D413L phosphatase-inactivating in ABI1 (purple ball). Emission spectra of (<bold>B</bold>) ABAleon2.11, (<bold>D</bold>) ABAleon2.13 and (<bold>F</bold>) ABAleon2.15 in the absence (unbound) and presence of (+)-ABA (bound) with indicated dynamic range (DR). (<bold>B</bold>) ABAleon2.11 exhibited no clear response to ABA. (<bold>C</bold>) (+)-ABA titrations of ABAleon2.11 compared to ABAleon2.1 suggest saturation of ABAleon2.11 in the absence of ABA. (<bold>E</bold> and <bold>G</bold>) ΔR/ΔR<sub>max</sub> plots of ABAleon titrations with (<bold>E</bold>) naturally occurring (+)-ABA and (<bold>G</bold>) its enantiomer (−)-ABA, which binds more weakly. The respective apparent ABA affinities (K′<sub>d</sub>) are indicated.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.014">http://dx.doi.org/10.7554/eLife.01739.014</ext-link></p></caption><graphic xlink:href="elife01739f007"/></fig><fig id="fig7s1" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.015</object-id><label>Figure 7—figure supplement 1.</label><caption><title>(+)- and (−)-ABA titrations of selected ABAleons.</title><p>(<bold>A</bold>) Structural model of the PYR1(gold)-ABA(purple)-ABI1(green) complex with indicated mutations in PYR1 (grey balls) and ABI1 (purple balls) of ABAleon2.1 (ABI1<sub>D413L</sub>), ABAleon2.11 (PYR1<sub>H60P</sub>), ABAleon2.12 (PYR1<sub>F61L</sub>), ABAleon2.13 (PYR1<sub>V83H</sub>), ABAleon2.14 (PYR1<sub>L87F</sub>), ABAleon2.15 (PYR1<sub>H115A</sub>), ABAleon2.16 (PYR1<sub>E141Q</sub>) and ABAleon2.17 (ABI1<sub>E142Q</sub>). (<bold>B</bold> and <bold>E</bold>) Emission ratios, (<bold>C</bold> and <bold>F</bold>) ratio changes and (<bold>D</bold> and <bold>G</bold>) ΔR/ΔR<sub>max</sub> of ABAleon1.1, ABAleon2.1, ABAleon2.13 and ABAleon2.15 plotted against (<bold>B</bold>–<bold>D</bold>) increasing (+)-ABA or (<bold>E</bold>–<bold>G</bold>) (−)-ABA concentrations. The color code and the respective mutations in the analyzed ABAleons are given above the graphs. Values in the graphs give (<bold>B</bold> and <bold>E</bold>) the dynamic range and (<bold>C</bold> and <bold>F</bold>) the apparent affinities (K′<sub>d</sub>) calculated form a four parameter logistic fit or (<bold>D</bold> and <bold>G</bold>) a three parameter sigmoidal Hill fit.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.015">http://dx.doi.org/10.7554/eLife.01739.015</ext-link></p></caption><graphic xlink:href="elife01739fs005"/></fig><fig id="fig7s2" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.016</object-id><label>Figure 7—figure supplement 2.</label><caption><title>Purification of ABAleons after expression in <italic>E. coli</italic>.</title><p>(<bold>A</bold>–<bold>D</bold>) Purification of recombinant ABAleon2.1. (<bold>A</bold>) anti-GFP immuno-detection, (<bold>B</bold>) PageBlue stain of SDS-gel after blotting, (<bold>C</bold>) Instant Blue stain of indicated fractions after gel filtration (GF) run and (<bold>D</bold>) normalized absorbance at 280 nm (protein; cyan) and 516 nm (cpVenus173; yellow) measured during GF-run. Ex, extract; FT, flow through; W, wash; E, elution; W2, Amicon filter wash; E2, Amicon filter elution; GF, gel filtration with numbered fractions. (<bold>E</bold>) anti-GFP immuno-detection and (<bold>F</bold>) PageBlue stain of 1 µg empty FRET cassette (F3) and ABAleon proteins after purification.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.016">http://dx.doi.org/10.7554/eLife.01739.016</ext-link></p></caption><graphic xlink:href="elife01739fs006"/></fig></fig-group><table-wrap id="tbl1" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.017</object-id><label>Table 1.</label><caption><p>Biochemical properties of ABAleons</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.017">http://dx.doi.org/10.7554/eLife.01739.017</ext-link></p></caption><table frame="hsides" rules="groups"><thead><tr><th>ABAleon</th><th>Mutations/Deletions</th><th>R<sub>min</sub></th><th>R<sub>max</sub></th><th>DR [%]</th><th>K’<sub>d</sub> (3 parameter Hill) [nM]</th><th>K’<sub>d</sub> (4 parameter logistic) [nM]</th></tr></thead><tbody><tr><td>empty FRET</td><td>Δ(PYR1-<sub>ΔN</sub>ABI1)</td><td>2.50</td><td>2.51</td><td>−0.69</td><td>–</td><td>–</td></tr><tr><td>ABAleon1.1</td><td>–</td><td>0.87</td><td>0.98</td><td>−14.83</td><td>266 ± 55</td><td>332 ± 45</td></tr><tr><td>ABAleon2.1</td><td><sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>0.91</td><td>0.97</td><td>−8.98</td><td>79 ± 29</td><td>114 ± 32</td></tr><tr><td>ABAleon2.2</td><td>Δ[(GGGGS)<sub>3</sub>] linker</td><td>0.98</td><td>1.04</td><td>−8.14</td><td>121 ± 38</td><td>156 ± 47</td></tr><tr><td>ABAleon2.3</td><td>Δ(GGSGGTS) linker</td><td>0.94</td><td>0.99</td><td>−7.53</td><td>72 ± 18</td><td>84 ± 22</td></tr><tr><td>ABAleon2.11</td><td>PYR1<sub>H60P</sub>, <sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>0.91</td><td>0.91</td><td>−2.39</td><td>–</td><td>–</td></tr><tr><td>ABAleon2.12</td><td>PYR1<sub>F61L</sub>, <sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>1.05</td><td>1.12</td><td>−8.29</td><td>87 ± 20</td><td>107 ± 22</td></tr><tr><td>ABAleon2.13</td><td>PYR1<sub>V83H</sub>, <sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>0.91</td><td>0.97</td><td>−7.09</td><td>8600 ± 7100</td><td>2900 ± 1500</td></tr><tr><td>ABAleon2.14</td><td>PYR1<sub>L87F</sub>, <sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>0.89</td><td>0.91</td><td>−2.80</td><td>1200 ± 1200</td><td>–</td></tr><tr><td>ABAleon2.15</td><td>PYR1<sub>H115A</sub>, <sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>0.92</td><td>1.01</td><td>−10.09</td><td>488 ± 45</td><td>510 ± 41</td></tr><tr><td>ABAleon2.16</td><td>PYR1<sub>E141Q</sub>, <sub>ΔN</sub>ABI1<sub>D413L</sub></td><td>0.97</td><td>1.02</td><td>−7.30</td><td>194 ± 46</td><td>229 ± 48</td></tr><tr><td>ABAleon2.17</td><td><sub>ΔN</sub>ABI1<sub>D413L</sub>,<sub>E142Q</sub></td><td>0.78</td><td>0.82</td><td>−4.90</td><td>35 ± 10</td><td>48 ± 8</td></tr></tbody></table><table-wrap-foot><fn><p>Biochemical properties of the empty FRET cassette and ABAleons with indicated mutations or deletions compared to the wild type ABAleon1.1. Shown are minimum (R<sub>min</sub>) and maximum emission ratios (R<sub>max</sub>), the dynamic range (DR) calculated as <inline-formula><mml:math id="inf2"><mml:mrow><mml:mfrac><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac><mml:mo>⋅</mml:mo><mml:mn>100</mml:mn></mml:mrow></mml:math></inline-formula> and the apparent ABA affinity (K′<sub>d</sub>) calculated from a three parameter Hill fit or a four parameter logistic fit.</p></fn></table-wrap-foot></table-wrap></p><p>Analyses showed that linker deletions slightly changed ABA affinity but also reduced the dynamic range (<xref ref-type="table" rid="tbl1">Table 1</xref>). Compared to other investigated ABAleon2.1 mutants, PYR1<sub>H60P</sub> in ABAleon2.11 strongly impaired ABA-induced emission changes (<xref ref-type="fig" rid="fig7">Figure 7B</xref>), which were comparable to ABA-bound ABAleon2.1 (<xref ref-type="fig" rid="fig7">Figure 7C</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>). Of the seven analyzed ABAleon2.1 mutants, PYR1<sub>V83H</sub> in ABAleon2.13 and PYR1<sub>H115A</sub> in ABAleon2.15 were of particular interest, as these mutants exhibited a reduced ABA affinity (K′<sub>d</sub> ∼ 3–4 µM of ABAleon2.13 and ∼ 500–600 nM of ABAleon2.15; <xref ref-type="fig" rid="fig7">Figure 7E</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>). Also the dynamic range of these ABAleons was not drastically affected (<xref ref-type="fig" rid="fig7">Figure 7D,F</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>).</p><p>Unless otherwise stated, all of the above analyses have been conducted using the natural (+)-enantiomer of ABA. In additional experiments, apparent affinities for (+)-ABA (<xref ref-type="fig" rid="fig7">Figure 7E</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1B–D</xref>) were compared to binding of its unnatural enantiomer (−)−ABA (<xref ref-type="fig" rid="fig7">Figure 7G</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1E–G</xref>). In these analyses the dynamic ranges and (+)−ABA affinities of ABAleon1.1 (K′<sub>d</sub> ∼ 300 nM) and ABAleon2.1 (K′<sub>d</sub> ∼ 100 nM) (<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1B–D</xref>) were comparable to previous analyses (<xref ref-type="fig" rid="fig1">Figure 1E,F</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>). However, the binding affinity for (−)−ABA was reduced by about twofold in ABAleon1.1 (K′<sub>d</sub> ∼ 600 nM) and ABAleon2.1 (K′<sub>d</sub> ∼ 180 nM) (<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1E–G</xref>). In case of ABAleon2.13, affinities for (+)- and (−)-ABA were comparably low (K′<sub>d</sub> ∼ 3–4 µM) and ABAleon2.13 did not reach saturating conditions at 200 µM (+)- or (−)-ABA (<xref ref-type="fig" rid="fig7">Figure 7E,G</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1B–G</xref>). Remarkably, ABAleon2.15 harboring the PYR1<sub>H115A</sub> mutation exhibited an apparent affinity for (−)-ABA of ∼ 30 µM (<xref ref-type="fig" rid="fig7">Figure 7G</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1F,G</xref>), which was 50-fold reduced compared to the (+)-ABA affinity (K′<sub>d</sub> ∼ 0.6 µ M) (<xref ref-type="fig" rid="fig7">Figure 7E</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1C,D</xref>) suggesting, that PYR1<sub>H115</sub> has an important function in ABA stereospecificity. From these analyses, ABAleon2.13 and ABAleon2.15 could be good candidates for analyzing ABA concentration changes in cell types that have higher basal ABA concentrations.</p></sec><sec id="s2-7"><title>Low affinity ABAleon2.15 reports ABA uptake in roots</title><p>To investigate the utility of low affinity ABAleons, ABAleon2.13, ABAleon2.14 and ABAleon2.15 were transformed into Arabidopsis Col-0 wild type plants. ABAleon2.14 was included in these analyses, as it exhibited an apparent K′<sub>d</sub> of ∼ 1.2 µM for ABA, however with a reduced dynamic range (<xref ref-type="table" rid="tbl1">Table 1</xref>). Initial analyses were performed in the root maturation zone of T<sub>2</sub> lines and compared with ABAleon2.1 (line 10) at comparable expression levels (<xref ref-type="fig" rid="fig8">Figure 8</xref>, <xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1</xref>). Examples of single representative measurements are presented in <xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1</xref>. All investigated ABAleons responded to externally applied 10 µM ABA with a negative emission ratio change (<xref ref-type="fig" rid="fig8">Figure 8</xref>, <xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1</xref>). While ABAleon2.13 and ABAleon2.14 exhibited a relatively low dynamic range <italic>in planta</italic> (<xref ref-type="fig" rid="fig8">Figure 8B,C,E</xref>, <xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1E,H</xref>), ABAleon2.15 responded comparable to ABAleon2.1 (line 10) (<xref ref-type="fig" rid="fig8">Figure 8A,D,E,F</xref>, <xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1B,K</xref>). Thus, ABAleon2.15 is the best candidate for a low affinity (K′<sub>d</sub> ∼ 600 nM) ABA-reporter.<fig-group><fig id="fig8" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.018</object-id><label>Figure 8.</label><caption><title>ABA-induced ABAleon2.1 (line 10), ABAleon2.13, ABAleon2.14 and ABAleon2.15 responses in the root maturation zone.</title><p>10 µM ABA-induced normalized emission ratio changes in the root maturation zone of (<bold>A</bold>, <bold>E</bold> dark blue line) ABAleon2.1 (line 10), (<bold>B</bold>, <bold>E</bold> cyan line) ABAleon2.13, (<bold>C</bold>, <bold>E</bold> yellow line) ABAleon2.14, and (<bold>D</bold>, <bold>E</bold> orange line) ABAleon2.15. (<bold>A</bold>–<bold>D</bold>) Data points from single measurements fitted by the respective four parameter logistic curve. (<bold>E</bold>) Combined data from three to four experiments in (<bold>A</bold>–<bold>D</bold>) fitted by the respective four parameter logistic curve. (<bold>F</bold>) t<sub>1/2</sub> values (means ± SEM, n = 3–4) calculated from the fitted curves in (<bold>A</bold>–<bold>D</bold>).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.018">http://dx.doi.org/10.7554/eLife.01739.018</ext-link></p></caption><graphic xlink:href="elife01739f008"/></fig><fig id="fig8s1" position="float" specific-use="child-fig"><object-id pub-id-type="doi">10.7554/eLife.01739.019</object-id><label>Figure 8—figure supplement 1.</label><caption><title>ABA-induced ABAleon2.1 (line 10), ABAleon2.13, ABAleon2.14 and ABAleon2.15 responses in the root maturation zone (examples).</title><p>Responses to 10 µM ABA in the root maturation zone of (<bold>A</bold>–<bold>C</bold>) ABAleon2.1 (line 10), (<bold>D</bold>–<bold>F</bold>) ABAleon2.13, (<bold>G</bold>–<bold>I</bold>) ABAleon2.14 and (<bold>J</bold>–<bold>L</bold>) ABAleon2.15. (<bold>A</bold>, <bold>D</bold>, <bold>G</bold>, <bold>J</bold>) Time course of mTurquoise (solid lines) and cpVenus173 emission (dashed lines) and (<bold>B</bold>, <bold>E</bold>, <bold>H</bold>, <bold>K</bold>) the corresponding normalized emission ratios colored according to the analyzed regions boxed in the in initial t = 0 images (<bold>C</bold>, <bold>F</bold>, <bold>I</bold>, <bold>L</bold>). Each analysis is a representative of 3–4 experiments.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.019">http://dx.doi.org/10.7554/eLife.01739.019</ext-link></p></caption><graphic xlink:href="elife01739fs007"/></fig></fig-group></p></sec><sec id="s2-8"><title>ABAleon2.1 reports endogenous ABA concentration changes in response to low humidity, salt and osmotic stress</title><p>It is well established that plants synthesize ABA in response to water stress (<xref ref-type="bibr" rid="bib73">Seo and Koshiba, 2011</xref>). Recent studies reported ABA increases in shoots and roots after 3 h of water stress (<xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>). In addition, older studies reported ABA concentration increases within 15 min in guard cells of <italic>Vicia faba</italic> (<xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>).</p><p>15 min after a drop in humidity ABAleon2.1 emission ratios decreased ∼ 3 % in guard cells and did not change when analyzed at the 30 min time point (<xref ref-type="fig" rid="fig9">Figure 9A,B</xref>), indicating fast ABA concentration adjustments in response to humidity changes. In 4 h stress treatments of detached leaves 100 mM NaCl and 10 µM ABA induced a 5–6 % ABAleon2.1 emission ratio change in guard cells (<xref ref-type="fig" rid="fig9">Figure 9C,D</xref>). In contrast, 300 mM sorbitol did not induce any detectable changes (<xref ref-type="fig" rid="fig9">Figure 9C,D</xref>).<fig id="fig9" position="float"><object-id pub-id-type="doi">10.7554/eLife.01739.020</object-id><label>Figure 9.</label><caption><title>ABAleon2.1 reports ABA concentration changes in response to low humidity, salt and osmotic stress.</title><p>ABAleon2.1 emission ratios in response to (<bold>A</bold> and <bold>B</bold>) low humidity and (<bold>C</bold>–<bold>H</bold>) 4–6 h treatments with 0.01 % EtOH (control), 100 mM NaCl, 300 mM sorbitol and 10 µM ABA in (<bold>C</bold> and <bold>D</bold>) guard cells, (<bold>E</bold> and <bold>F</bold>) the root maturation- and (<bold>G</bold> and <bold>H</bold>) elongation zone. (<bold>A</bold>, <bold>C</bold>, <bold>E</bold>, <bold>G</bold>) Representative emission ratio images with indicated calibration bars. (<bold>B</bold> and <bold>D</bold>) Normalized emission ratios in guard cells (means ± SEM, n = 3 with ≥ 24 guard cell pairs/n). (<bold>F</bold> and <bold>H</bold>) Normalized emission ratios analyzed from two boxed regions (cyan and yellow) color-coded in the left images of (<bold>E</bold> and <bold>G</bold>) (means ± SEM, n = 8–10 seedlings).</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.020">http://dx.doi.org/10.7554/eLife.01739.020</ext-link></p></caption><graphic xlink:href="elife01739f009"/></fig></p><p>In root tissues two separate regions labeled by cyan and yellow boxes (<xref ref-type="fig" rid="fig9">Figure 9E,G</xref>, left) were measured after 6 h stress treatments. In these analyses 100 mM NaCl or 300 mM sorbitol induced ABAleon2.1 emission ratio changes of 3–6 % in the root maturation zone compared to 7 % changes in response to 10 µM ABA (<xref ref-type="fig" rid="fig9">Figure 9F</xref>). In the root elongation zone, responses to 100 mM NaCl and 300 mM sorbitol were 7–8 % while 10 µM ABA induced ABAleon2.1 emission ratio changes of 5–6 % (<xref ref-type="fig" rid="fig9">Figure 9H</xref>). These analyses demonstrate the utility of ABAleon2.1 to report endogenous ABA concentration changes in response to low humidity, salt- and osmotic stress (<xref ref-type="fig" rid="fig9">Figure 9</xref>).</p></sec></sec><sec id="s3" sec-type="discussion"><title>Discussion</title><sec id="s3-1"><title>Design of ABAleon reporters</title><p>Genetically encoded fluorescent protein-based reporters are powerful tools in cell biology (<xref ref-type="bibr" rid="bib23">Giepmans et al., 2006</xref>; <xref ref-type="bibr" rid="bib62">Okumoto et al., 2012</xref>; <xref ref-type="bibr" rid="bib1">Alford et al., 2013</xref>). Here we report the design, engineering and application of ABAleons, FRET-based reporters that enable the direct analysis of instantaneous ABA concentration changes <italic>in vitro</italic> and <italic>in planta</italic>.</p><p>ABAleons were built on the strictly ABA-dependent interaction of PP2Cs with PYR1 and its phylogenetically close relatives (<xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>; <xref ref-type="bibr" rid="bib69">Santiago et al., 2009b</xref>; <xref ref-type="bibr" rid="bib59">Nishimura et al., 2010</xref>), rather than the other members of the PYR/PYL/RCAR family, which have a higher probability of residing in a ‘monomeric’ state, and which can interact with PP2Cs even in the absence of ABA (<xref ref-type="bibr" rid="bib48">Ma et al., 2009</xref>; <xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>; <xref ref-type="bibr" rid="bib15">Dupeux et al., 2011</xref>; <xref ref-type="bibr" rid="bib26">Hao et al., 2011</xref>). PYR1 and close homologs exhibit lower ABA affinities (K<sub>d</sub> ∼ 50–100 µM) than those of the ‘monomeric’ homologs (K<sub>d</sub> ∼ 1 µM) (<xref ref-type="bibr" rid="bib48">Ma et al., 2009</xref>; <xref ref-type="bibr" rid="bib50">Miyazono et al., 2009</xref>; <xref ref-type="bibr" rid="bib69">Santiago et al., 2009b</xref>; <xref ref-type="bibr" rid="bib15">Dupeux et al., 2011</xref>). In comparison, the ABA affinity of PYR/PYL/RCARs when bound to PP2Cs ranges between K<sub>d</sub> ∼ 20–125 nM (<xref ref-type="bibr" rid="bib48">Ma et al., 2009</xref>; <xref ref-type="bibr" rid="bib35">Joshi-Saha et al., 2011</xref>). ABAleons exhibit similar ABA affinities to endogenous PYR/PYL/RCARs or PYR/PYL/RCARs in complex with PP2Cs (<xref ref-type="fig" rid="fig1">Figure 1E,F</xref>, <xref ref-type="fig" rid="fig7">Figure 7E</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>), consistent with our findings, that ABAleon2.1 is able to detect changes in endogenous ABA concentrations (<xref ref-type="fig" rid="fig9">Figure 9</xref>).</p><p>ABAleons exhibit higher affinity to the naturally occurring (+)-ABA than to (−)-ABA (<xref ref-type="fig" rid="fig7">Figure 7E,G</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1B–G</xref>), and could potentially also bind to the synthetic ABA mimics pyrabactin and quinabactin (<xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>; <xref ref-type="bibr" rid="bib61">Okamoto et al., 2013</xref>). One of the ABAleon derivatives, ABAleon2.15, carrying the PYR1<sub>H115A</sub> mutation, exhibited strongly reduced affinity for (−)-ABA (<xref ref-type="fig" rid="fig7">Figure 7G</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1E–G</xref>), suggesting an important role of this amino acid in ABA stereospecificity. These results are consistent with recent findings that the homologous H139 in PYL3 was important for ABA stereospecificity (<xref ref-type="bibr" rid="bib88">Zhang et al., 2013</xref>). ABAleon2.11, carrying the PYR1<sub>H60P</sub> mutation (<xref ref-type="bibr" rid="bib15">Dupeux et al., 2011</xref>), exhibited spectral characteristics comparable to ABA-bound ABAleon2.1 (<xref ref-type="fig" rid="fig7">Figure 7C</xref>). This is consistent with the notion, that the PYR1<sub>H60P</sub> protein may form an alternative interaction interface with PP2Cs, even in the absence of ABA (<xref ref-type="bibr" rid="bib15">Dupeux et al., 2011</xref>).</p><p>In Arabidopsis, over-expression of the ABA receptors PYR1, PYL2 and PYL5 induces ABA hypersensitivity (<xref ref-type="fig" rid="fig5">Figure 5</xref>; <xref ref-type="bibr" rid="bib69">Santiago et al., 2009b</xref>; <xref ref-type="bibr" rid="bib51">Mosquna et al., 2011</xref>), while ectopic expression of the PP2Cs ABI1 and HAB1 decreases ABA sensitivity (<xref ref-type="fig" rid="fig5">Figure 5</xref>; <xref ref-type="bibr" rid="bib69">Santiago et al., 2009b</xref>; <xref ref-type="bibr" rid="bib59">Nishimura et al., 2010</xref>). Transgenic Arabidopsis plants expressing ABAleon2.1 exhibited a reduced sensitivity to exogenously applied ABA in seed germination, cotyledon expansion and growth assays, but not in stomatal closure assays (<xref ref-type="fig" rid="fig5">Figure 5</xref>). The degree of reduced ABA sensitivity correlated with increasing ABAleon2.1 expression levels in two independent transgenic lines (<xref ref-type="fig" rid="fig5">Figure 5</xref>). Because ABAleon2.1 did not exhibit any phosphatase activity <italic>in vitro</italic> (<xref ref-type="fig" rid="fig1">Figure 1H</xref>), it can be speculated, that ABAleon2.1 might sequester a certain amount of physiologically relevant ABA in certain tissues and cell types due to its high affinity (<xref ref-type="fig" rid="fig1">Figure 1E,F</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1C,D</xref>; <xref ref-type="table" rid="tbl1">Table 1</xref>), thus causing ABA hyposensitivity (<xref ref-type="fig" rid="fig5">Figure 5</xref>). Future generations of ABAleons and improved imaging sensitivity at lower ABAleon concentrations (<xref ref-type="fig" rid="fig8">Figure 8</xref>) could enable the reduction of ABAleon side effects.</p></sec><sec id="s3-2"><title>Analyses of ABA concentration changes and long-distance ABA transport in Arabidopsis</title><p>By definition, a hormone transmits a signal from the site of hormone synthesis to its place of action. Although long-distance ABA transport has been studied for many years (<xref ref-type="bibr" rid="bib71">Sauter et al., 2001</xref>; <xref ref-type="bibr" rid="bib85">Wilkinson and Davies, 2002</xref>; <xref ref-type="bibr" rid="bib73">Seo and Koshiba, 2011</xref>; <xref ref-type="bibr" rid="bib7">Boursiac et al., 2013</xref> and references therein), no method for the direct detection of ABA concentration changes and ABA transport rates <italic>in planta</italic> has been available. The detailed characterizations of ABAleons demonstrate the utility of ABAleon2.1 (K′<sub>d</sub> ∼ 100 nM) and ABAleon2.15 (K′<sub>d</sub> ∼ 600 nM), which exhibit a sufficient ABA-specificity and dynamic range (9–10 %) upon ABA binding to monitor instantaneous ABA-induced or environmentally-triggered ABA concentration changes.</p><p>ABAleon2.1 and ABAleon2.15 enabled measurements of rapid ABA-induced changes in ABA concentrations in various tissues (<xref ref-type="fig" rid="fig3">Figure 3</xref>, <xref ref-type="fig" rid="fig8">Figure 8</xref>), ABA uptake into whole seedlings (<xref ref-type="fig" rid="fig2">Figure 2A,B</xref>), directional ABA transport from the hypocotyl base towards the shoot (<xref ref-type="fig" rid="fig3">Figure 3E,F</xref>; <xref ref-type="other" rid="video1">Video 1</xref>) and from the hypocotyl or shoot to the root (<xref ref-type="fig" rid="fig6">Figure 6B,C,E-H</xref>). Under the imposed conditions the speed of ABA transport within the hypocotyl was ∼ 16 µm/min. Furthermore, ABA transport from the root maturation zone to the shoot could not be detected within three hours (<xref ref-type="fig" rid="fig6">Figure 6D,I,J</xref>). Because the experimental setup (<xref ref-type="fig" rid="fig6">Figure 6</xref>), in which both shoot and root were perfused with buffer, would compromise the transpirational stream, the present data do not exclude concomitant ABA transport from roots to shoots, as has been found in other plant species (<xref ref-type="bibr" rid="bib85">Wilkinson and Davies, 2002</xref>).</p><p>In response to water stress, Arabidopsis plants synthesize ABA in the shoot, which has been reported to be transported to the root (<xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>). ABA accumulation in roots and leaves was detected 2.5–3 h after stress initiation (<xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>). Older studies, using manually dissected guard cells, measured ABA concentration increases in guard cells 15 min after passive dehydration of leaves (<xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>). ABAleon2.1 enabled the rapid detection of ABA concentration changes in guard cells in response to a humidity drop (<xref ref-type="fig" rid="fig9">Figure 9A,B</xref>) and the visualization of long term ABA accumulation in response to salt in guard cells (<xref ref-type="fig" rid="fig9">Figure 9C,D</xref>) and in response to salt- and osmotic stress in roots (<xref ref-type="fig" rid="fig9">Figure 9E–H</xref>).</p><p>Surprisingly, ABA-induced ABAleon2.1 ratio changes in the root maturation zone were accelerated in the <italic>pyr1-1</italic>/<italic>pyl1-1</italic>/<italic>pyl2-1</italic>/<italic>pyl4-1</italic> mutant (<xref ref-type="fig" rid="fig4">Figure 4</xref>). Mutants defective in ABA signaling may compensate by up-regulating ABA levels, as reported previously (<xref ref-type="bibr" rid="bib55">Nakashima et al., 2009</xref>) and could also up-regulate ABA transport activity (<xref ref-type="fig" rid="fig4">Figure 4C,D</xref>). Alternatively, knock out of ABA receptors may also affect ABA buffering capacity (<xref ref-type="fig" rid="fig4">Figure 4C,D</xref>). ABA reporter analyses of ABA uptake (<xref ref-type="fig" rid="fig4">Figure 4</xref>) or long-distance ABA transport (<xref ref-type="fig" rid="fig3">Figure 3D–F</xref>, <xref ref-type="fig" rid="fig6">Figure 6</xref>) could be utilized for the characterization or identification of ABA transporters and their regulation mechanisms <italic>in planta</italic> or in heterologous systems (<xref ref-type="bibr" rid="bib34a">Jones et al., 2014</xref>).</p><p>ABA induces cytoplasmic alkalinization of guard cells (<xref ref-type="bibr" rid="bib6">Blatt and Armstrong, 1993</xref>; <xref ref-type="bibr" rid="bib33">Islam et al., 2010</xref>). In guard cells of <italic>Vicia faba</italic>, cytoplasmic pH was found to be 7.67 and increased 0.27 units upon ABA treatment (<xref ref-type="bibr" rid="bib6">Blatt and Armstrong, 1993</xref>). Cytoplasmic pH in roots was 7.3 and could increase to 7.7 (<xref ref-type="bibr" rid="bib5">Bibikova et al., 1998</xref>). In these pH ranges ABA-induced ABAleon1.1 emission ratio changes were stable <italic>in vitro</italic> (<xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1B</xref>).</p><p><italic>In vivo</italic> ABA concentrations in cellular compartments of specific plant cells and tissues are currently unknown. Overall ABA levels range from 30–50 ng/g dry-weight in non-stressed plants (<xref ref-type="bibr" rid="bib18">Forcat et al., 2008</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>), which can increase up to 30-fold in response to limited water conditions (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>; <xref ref-type="bibr" rid="bib28">Harris and Outlaw 1991</xref>; <xref ref-type="bibr" rid="bib11">Christmann et al., 2007</xref>; <xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>). ABAleon2.1 and ABAleon2.15 exhibit a sufficient dynamic range for <italic>in vitro</italic> calibrations (<xref ref-type="fig" rid="fig1">Figure 1E,F</xref>, <xref ref-type="fig" rid="fig7">Figure 7E</xref>, <xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1B–D</xref>) that permit approximations of cellular ABA concentrations, for example in the range of ≤ 25 nM in the root elongation zone. In <italic>Vicia faba</italic> guard cells ABA concentrations were ∼ 0.7 fg/cell pair in unstressed and ∼ 17.7 fg/cell pair in stressed guard cells (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>). ABA concentrations in stressed guard cells were estimated to be in the range of ∼ 15 µM (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>; <xref ref-type="bibr" rid="bib28">Harris and Outlaw 1991</xref>). Extrapolating from these values, unstressed guard cell ABA concentration would be ∼ 500 nM. Such approximations would be consistent with the partial saturation and reduced response of ABAleon2.1 in guard cells (<xref ref-type="fig" rid="fig3">Figure 3A–C</xref>) and with strong expression of the ABA-induced reporter pRAB18-GFP (<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1</xref>).</p><p>Our results demonstrate that ABAleons affect ABA signaling to certain extent, but can analyze changes in ABA concentrations in diverse tissues and cell types and measure ABA transport <italic>in vivo</italic>. ABAleons will thus allow hitherto challenging investigations of ABA synthesis and transport <italic>in planta</italic>, in response to changes in environmental conditions or treatment with synthetic compounds designed to improve plant survival and crop yields under adverse climate conditions. Further, in combination with other genetically encoded reporters, ABAleons can be used to decipher the cross talk between ABA and other signaling molecules. During the course of our ABAleon research we found, that Jones et al. developed ABACUS-type ABA reporters, however with biochemical properties complementary to ABAleons (<xref ref-type="bibr" rid="bib34a">Jones et al., 2014</xref>). Thus, ABAleons and ABACUS could be utilized to study novel aspects of ABA signaling in intact plants.</p></sec></sec><sec id="s4" sec-type="materials|methods"><title>Materials and methods</title><sec id="s4-1"><title>Construction of ABAleons</title><p>Fluorescent protein coding sequences were re-amplified from the pF40 plasmid (<xref ref-type="bibr" rid="bib65">Piljić et al., 2011</xref>) and ligated into <italic>Xba I/Apa I</italic> (mTurquoise) or <italic>Xma I/Sac I</italic> sites (cpVenus173) of a modified pUC19 plasmid (<xref ref-type="bibr" rid="bib83">Walter et al., 2004</xref>; <xref ref-type="bibr" rid="bib81">Waadt et al., 2008</xref>) resulting in the pUC-F3 and pUC-F3_II empty FRET-cassettes with the latter containing a <italic>Nde I</italic>-site downstream of the <italic>Xba I</italic>-site and a StrepII-tag fusion of cpVenus173 at its free end. PYR1-GGSGG and (GGGGS)<sub>4</sub>-<sub>ΔN</sub>ABI1 and mutants were cloned and inserted between <italic>Apa I/Spe I</italic> and <italic>Spe I/Xma I</italic> sites of pUC-F3 and pUC-F3_II to obtain pUC-ABAleon and pUC-ABAleon_II, respectively. <italic>Escherichia coli</italic> expression vectors were obtained by sub-cloning ABAleon_II versions <italic>Nde I/Sac I</italic> into pET-24b(+) (Novagen, Darmstadt, Germany). For expression in plants, the pUBQ10 promoter (AT4G05310; <xref ref-type="bibr" rid="bib60">Norris et al., 1993</xref>; <xref ref-type="bibr" rid="bib42">Krebs et al., 2012</xref>), inserted between <italic>Hind III/Spe I</italic> sites of a modified pUC19 plasmid (kindly provided by Jörg Kudla, University of Münster), was mutated to remove a <italic>Sac I</italic> site within the pUBQ10. In addition, the HSP18.2 terminator (T) (AT5G59720; <xref ref-type="bibr" rid="bib54">Nagaya et al., 2010</xref>) was inserted between the <italic>Sac I/Eco RI</italic> sites of pBluescript II (Stratagene, La Jolla, CA) and the <italic>Hind III</italic> site within the HSP18.2T was deleted resulting in pKS-HSP18.2T<sub>Δ<italic>Hind III</italic></sub>. Both pUBQ10<sub>Δ<italic>Sac I</italic></sub> and HSP18.2T<sub>Δ<italic>Hind III</italic></sub> were sub-cloned into plant compatible vectors pGPTVII.Bar, which confers glufosinate (BASTA) resistance, and pGPTVII.Hyg, which confers hygromycin resistance (<xref ref-type="bibr" rid="bib83">Walter et al., 2004</xref>), resulting in the barII-UT and hygII-UT plasmids. Finally, ABAleon2.1, ABAleon2.1 mutants and the empty FRET-cassette were sub-cloned from pUC-ABAleon2.1, pUC-ABAleon2.1x_II and pUC-F3 plasmids into the barII-UT and hygII-UT plasmids to obtain the barII-UT-ABAleon2.1, barII-UTF3 and hygII-UT-ABAleon2.1 and mutant plasmids for expression in plants. More detailed information about oligo-nucleotides and plasmids used and generated in this work is provided in <xref ref-type="supplementary-material" rid="SD1-data">Supplementary file 1A</xref> and <xref ref-type="supplementary-material" rid="SD1-data">Supplementary file 1B</xref>.</p></sec><sec id="s4-2"><title>Protein expression and purification</title><p>pET-F3_II (empty FRET) and pET-ABAleon_II versions in BL21-CodonPlus (DE3)-RIL cells (Stratagene) were grown at 37 °C in 2 L Luria Broth (LB) medium containing 25 µg/mL Kanamycin. At an optical density at 600 nm (OD<sub>600</sub>) of 0.5, cells were induced with 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) and shaken for additional 4-6 h at 24 °C. Cells were collected by centrifugation (15 min 5.000×<italic>g</italic> and 4 °C) and stored at −80 °C. Proteins were extracted by sonification after 60 min incubation in 20 mL extraction buffer (30 mM Tris–HCl [pH 7.4], 250 mM NaCl, 1 mM Ethylenediaminetetraacetic acid [EDTA], 1 mM Phenylmethylsulfonyl fluoride [PMSF], 1x protease inhibitor [Roche, USA] and 1 mg/mL Lysozym). Cell debris was removed by centrifugation (2 × 30 min, 20.000×<italic>g</italic> and 4 °C) and by filtration through 0.45 µm syringe filters.</p><p>Protein extracts were mixed with 2.5 ml 50 % Strep-Tactin Macroprep resin (IBA, Göttingen, Germany) pre-equilibrated in wash buffer I (30 mM Tris–HCl [pH 7.4], 250 mM NaCl, 1 mM EDTA) and protein/resin mix was incubated for 1 h at 4 °C while shaking in a 50 ml tube. The suspension was run twice through a 20 mL gravity column (BioRad, Hercules, CA) followed by two washes of the remaining protein/resin mix with 10 column volumes (CV) of wash buffer I and one wash with 10 CV of wash buffer II (30 mM Tris–HCl [pH 7.4], 250 mM NaCl, 10 mM MgCl<sub>2</sub> and 1 mM MnCl<sub>2</sub>). Proteins were eluted 3x in 1 CV wash buffer II supplemented with 2.5 mM Desthiobiotin (Sigma, USA) and concentrated to ∼ 1 mL volume by centrifugation at 3.000×<italic>g</italic> and 4 °C using Amicon Ultra-4 30K or 10K centrifugal filters (Millipore, Billerica, MA). Purified proteins were run through a Superdex 200 HiLoad 16/60 column (GE Healthcare) in wash buffer II using an ÄKTA purifier fast protein liquid chromatography (FPLC) system (GE Healthcare) with 0.8 MPa column pressure limit, 1 mL/min flow rate and 2 mL fraction size volume. Fractions exhibiting 280 nm, 445 nm and 516 nm absorbance were analyzed by SDS-PAGE and Instant Blue (Cole–Parmer, USA) protein staining and selected for further concentration using Amicon Ultra-4 centrifugal filters. Protein aliquots were flash frozen in liquid N<sub>2</sub> and stored at −80 °C. Protein purity was analyzed by SDS-PAGE, immuno-blotting using anti-GFP antibody (Life Technologies, Darmstadt, Germany) and PageBlue staining (Thermo Scientific, Rockford, IL; <xref ref-type="bibr" rid="bib82">Waadt et al., 2014</xref>). Results of F3 empty FRET and ABAleon purifications are provided in <xref ref-type="fig" rid="fig7s2">Figure 7—figure supplement 2</xref>.</p><p>The coding sequence of <sub>ΔN</sub>ABI1 corresponding to amino acid residues 125–429 was inserted via <italic>Nde I</italic>/<italic>Bam HI</italic> into pET28a (Novagen; <xref ref-type="supplementary-material" rid="SD1-data">Supplementary file 1A</xref>, <xref ref-type="supplementary-material" rid="SD1-data">Supplementary file 1B</xref>) and transformed into <italic>E. coli</italic> BL21 (DE3). <italic>E. coli</italic> were grown at 37 °C, and protein expression was induced by 1 mM IPTG at OD<sub>600</sub> of 0.6–0.8. After overnight incubation at 25 °C, cells were harvested by centrifugation (15 min 5.000×<italic>g</italic> and 4 °C) and re-suspended in 50 mM Tris–HCl (pH 8.0) and 500 mM NaCl. Cells were sonicated on ice and lysates were obtained after centrifugation at 12,000×<italic>g</italic> for 1 h 6xHis-<sub>ΔN</sub>ABI1 extracts were applied to a Ni-NTA column (Qiagen, Hilden, Germany) and washed with five bed volumes of 50 mM Tris–HCl (pH 8.0), 500 mM NaCl and 10 mM imidazole. Bound proteins were eluted in 50 mM Tris–HCl (pH 8.0), 500 mM NaCl and 300 mM imidazole. 6xHis-<sub>ΔN</sub>ABI1 was further purified using Sephacryl S-200 (GE Healthcare) in 50 mM Tris–HCl (pH 8.0) and 150 mM NaCl. 6xHis-PYR1 (<xref ref-type="bibr" rid="bib58">Nishimura et al., 2009</xref>) and 6xHis-<sub>ΔN</sub>ABI1 proteins were re-buffered and concentrated into wash buffer II using Amicon Ultra-4 centrifugal filters. Protein purity and concentrations were analyzed by SDS-PAGE and PageBlue staining and quantified according to a 0–2000 ng BSA (NEB, Ipswich, MA) standard calibration.</p></sec><sec id="s4-3"><title><italic>In vitro</italic> analyses of ABAleons</title><p>ABA titration experiments were conducted in a TECAN Infinite M1000 PRO (TECAN, Männedorf, Switzerland) using 1 µM ABAleon protein in wash buffer II with 0.1 % EtOH or DMSO as solvent for (+)-ABA (TCI, Portland, OR), generally used in assays unless otherwise stated, or (−)-ABA (Sigma). Protein samples were excited with 440 ± 5 nm and emission 450–700 nm was measured in 1 nm steps with 5 nm bandwidth and 10 flashes of 20 µs and 400 Hz. Gain settings to obtain optimal emission spectra were calculated by the TECAN software from unbound ABAleon emission. Emission bands of mTurquoise (470–490 nm) and cpVenus173 (518–538 nm) were used to calculate cpVenus173/mTurquoise emission ratios. Apparent ABA affinities (K′<sub>d</sub>) were calculated from emission ratio plots by fitting a four parameter logistic curve <inline-formula><mml:math id="inf3"><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mfrac><mml:mrow><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mi>A</mml:mi><mml:mi>B</mml:mi><mml:mi>A</mml:mi></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mrow><mml:msup><mml:mi>K</mml:mi><mml:mo>'</mml:mo></mml:msup><mml:mi>d</mml:mi></mml:mrow></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:mfrac></mml:mrow></mml:math></inline-formula> or from ΔR/ Δ R<sub>max</sub> plots by fitting a three parameter sigmoidal Hill equation <inline-formula><mml:math id="inf4"><mml:mrow><mml:mfrac><mml:mrow><mml:mi>Δ</mml:mi><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mi>Δ</mml:mi><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>·</mml:mo><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mi>A</mml:mi><mml:mi>B</mml:mi><mml:mi>A</mml:mi></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mi>n</mml:mi></mml:msup></mml:mrow><mml:mrow><mml:msubsup><mml:mi>K</mml:mi><mml:mi>d</mml:mi><mml:mrow><mml:mo>′</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:msubsup><mml:mi>·</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mi>A</mml:mi><mml:mi>B</mml:mi><mml:mi>A</mml:mi></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:mfrac></mml:mrow></mml:math></inline-formula> (<xref ref-type="bibr" rid="bib63">Palmer et al., 2006</xref>) using the SigmaPlot 10.0 version (Systat, San Jose, CA). Dynamic ranges were calculated from experimentally determined values as <inline-formula><mml:math id="inf5"><mml:mrow><mml:mfrac><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac><mml:mi>·</mml:mi><mml:mn>100</mml:mn></mml:mrow></mml:math></inline-formula>.</p><p>Absorbance spectra (275–700 nm, slit 0.2 nm) of ABAleons were analyzed with a UV-VIS-Spectrophotometer (UV-2700) (Shimadzu, Columbia, MD). Absorbance at 434 nm (mTurquoise) was used to calculate concentrations of the empty FRET and ABAleon proteins (<xref ref-type="bibr" rid="bib24">Goedhart et al., 2010</xref>) and the ratio of Abs<sub>515</sub> (cpVenus173) and Abs<sub>434</sub> was used to estimate protein purity.</p><p>pH titrations were performed by addition of 1 µL concentrated ABAleon1.1 protein (final concentration 200 nM) to 100 µL wash buffer II adjusted to a pH range between pH 5.0–8.2 with 1 M HCl and MES powder or with 2 M NaOH. After recordings of ABA-free ABAleon1.1 emission spectra, using the TECAN Infinite M1000 PRO as mentioned above, 1 µL of 1 mM ABA (final concentration 10 µM ABA) was added and emission spectra were recorded using identical settings. Experiments were performed in duplicate and fitted by a four parameter Hill equation <inline-formula><mml:math id="inf6"><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mfrac><mml:mrow><mml:mi>a</mml:mi><mml:mi>·</mml:mi><mml:msup><mml:mi>x</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mi>c</mml:mi><mml:mi>n</mml:mi></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:mfrac><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math></inline-formula> in SigmaPlot 10.0 (Systat, San Jose, CA). Ratio change was calculated by subtraction of the ABA-free from the ABA-bound equation values.</p><p>ABA-induced ABAleon2.1 kinetics were analyzed using 2.77 µM ABAleon2.1 in a Berthold Mithras LB 940 (Berthold Technologies, Bad Wildbad, Germany) with the following settings: Lamp energy 5000, counting time 0.05 s, excitation 440 ± 10 nm, emission 470 ± 10 nm (mTurquoise) and 530 ± 20 nm (cpVenus173) measured in cycles of 6.12 s. At cycle 25, 50 µL 3 µM ABA in wash buffer II and 0.3 % EtOH was applied with low injector speed to result in the final 1 µM ABA in 0.1 % EtOH.</p><p>Phosphatase assays were performed using the serine/threonine phosphatase assay system (Promega, Madison, WI). In brief, 50 µL reactions containing wash buffer II, 10-50 pmol protein, 5000 pmol Ser/Thr phosphopeptide ± 5 µM ABA with 0.005 % EtOH as solvent were incubated for 10–30 min at room temperature. Reactions were stopped by addition of 50 µL of the supplied molybdate dye/additive mixture and phosphate release was measured according to a standard curve with a Berthold Mithras LB 940 plate reader (Absorbance 600 ± 10 nm, lamp energy 50,000 and counting time 2 s).</p></sec><sec id="s4-4"><title>Structural modeling of ABAleon</title><p>Three-dimensional coordinates of major components of ABAleon were built with known crystal structures of mTurquoise (pdb: 2YE0, <xref ref-type="bibr" rid="bib25">Goedhart et al., 2012</xref>), PYL1-ABA-ABI1 (pdb: 3JRQ, <xref ref-type="bibr" rid="bib50">Miyazono et al., 2009</xref>) and Venus (pdb: 1MYW, <xref ref-type="bibr" rid="bib67">Rekas et al., 2002</xref>). Each component of ABAleon was manually assembled using COOT (<xref ref-type="bibr" rid="bib16">Emsley et al., 2010</xref>). In the assembly, PYL1 was replaced by PYR1 (pdb: 3K3K, <xref ref-type="bibr" rid="bib58">Nishimura et al., 2009</xref>) by tracing the Cα backbone. The unstructured C-terminus of mTurquoise was placed in distance corresponding to the PG linker and the PYR1 N-terminus. Venus was placed between ABI1 and mTurquoise with the N-terminus of Venus facing towards the C-terminus of ABI1. All structural figures were drawn with PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.).</p></sec><sec id="s4-5"><title>Plant culture and transgenic Arabidopsis lines</title><p>Seeds were sterilized in 70 % EtOH and 0.04 % sodium dodecyl sulfate (SDS), washed three times in 100 % EtOH and sown on 0.5 Murashige and Skoog (MS) media (Sigma) adjusted to pH 5.8 with 1 M KOH and supplemented with 0.8 % phytoagar. After at least 4 days of stratification in the dark at 4 °C plants were cultivated in a growth room (16 h day/8 h night cycle, 25 °C, 50–100 µEm<sup>−2</sup>s<sup>−1</sup> and 26 % relative humidity) or in a CMP4030 plant growth chamber (16 h day/8 h night cycle, 22 °C, 50 µEm<sup>−2</sup>s<sup>−1</sup> and 25 % relative humidity; Conviron, Winnipeg, Manitoba). 6-day-old seedlings were transferred to soil and grown either in the growth room or in a CMP3244 plant growth chamber (16 h day, 22 °C/8 h night, 18 °C cycle, 50–100 µEm<sup>−2</sup>s<sup>−1</sup> and 30–50 % relative humidity; Conviron).</p><p>barII-UTF3 empty FRET, barII-UT-ABAleon2.1, hygII-UT-ABAleon2.13, hygII-UT-ABAleon2.14 and hygII-UT-ABAleon2.15 were transformed into Arabidopsis Columbia 0 accession and hygII-UT-ABAleon2.1 was transformed into <italic>pyl4ple</italic> [<italic>pyr1-1</italic> (Q169 stop)/<italic>pyl1-1</italic> (SALK_054640)/<italic>pyl2-1</italic> (GT2864)/<italic>pyl4-1</italic> (SAIL_517_C08)] (<xref ref-type="bibr" rid="bib64">Park et al., 2009</xref>; <xref ref-type="bibr" rid="bib59">Nishimura et al., 2010</xref>) by the floral dip method (<xref ref-type="bibr" rid="bib12">Clough and Bent, 1998</xref>). Transformants were selected on 0.5 MS media supplemented with either 10 µg/mL glufosinate or 25 µg/mL hygromycin and further cultivated in soil in a CMP3244 plant growth chamber. Positive transformants were further selected by fluorescence intensity at a confocal microscope (see below). A list of transgenic Arabidopsis lines generated and used in this work is provided in <xref ref-type="supplementary-material" rid="SD1-data">Supplementary file 1C</xref>.</p></sec><sec id="s4-6"><title>ABA sensitivity analyses</title><p>For ABA seed germination assays seeds were sown on 0.5 MS agar media supplemented with 0.08 % EtOH as solvent control or 0.8 µM (+)-ABA (TCI, Portland, OR). After stratification, plants were grown in the growth room. Germinated seeds and seedlings with expanded green cotyledons were counted for a time period of 7 days with blinded genotypes. Analyses represent mean values ± SEM of four technical replicates normalized to the seed count (48–50 seeds) of each experiment.</p><p>For growth assays, 4-day-old seedlings grown on 0.5 MS agar media were transferred to 0.5 MS agar media supplemented with 0.1 % EtOH as solvent control or 10 µM (+)-ABA and grown vertically in the growth room. Images were acquired 5 days after seedling transfer. Fresh weight was measured from pools of seven seedlings/experiment (means ± SEM, n = 5) normalized to the 0 µM ABA control conditions.</p><p>ABA-induced stomatal closure analyses were performed with 20-23-day-old plants grown vertically on 0.5 MS agar media in the CMP4030 plant growth chamber. Six detached leaves were floated in assay buffer (5 mM KCl, 50 µM CaCl<sub>2</sub> and 10 mM MES-Tris pH 5.6) at 22 °C and 100 µE m<sup>−2</sup>s<sup>−1</sup> for 2 h. Subsequently, (+)-ABA or EtOH as solvent control was added to a final concentration of 10 µM (+)-ABA in 0.1 % EtOH followed by additional 2 h incubation. Leaves were blended 4x ∼10 s in ∼50 ml deionized water and leaf epidermal tissue was collected through a 100 µm nylon mesh (Millipore, Billerica, MA) and mounted on a microscope slide for imaging. Images were acquired using an inverted light microscope (Nikon Eclipse TS100) equipped with a 40x/0.65 ∞/0.17 WD. 0.57 objective and connected to the Scion camera and Scion VisiCapture Application Version1.3 (Scion Corporation, Frederick, MD). Experiments were performed with blinded genotypes and treatments and ≥ 24 stomatal apertures were measured per experiment using Fiji (<xref ref-type="bibr" rid="bib72">Schindelin et al., 2012</xref>). Data represent mean stomatal apertures ± SEM of three experiments normalized to the solvent control.</p></sec><sec id="s4-7"><title>Sample preparation and microscopic analyses</title><p>For guard cell imaging, 4-week-old detached leaves without mid vein were glued with the abaxial side on a cover glass using medical adhesive (Hollister, Libertyville, IL) and upper cell layers were dissected away with an industrial razor blade. Epidermal strips were incubated in assay buffer (5 mM KCl, 50 µM CaCl<sub>2</sub>, 10 mM MES-Tris, pH 5.6) and 0.01 % EtOH, as solvent control for ABA, for 1 h. Glass cover slips were mounted on a microscope slide with a central hole (Ø = 13 mm) using vacuum grease silicone (Beckman, Pasadena, CA) and analyzed in 200 µL of buffer mentioned above. For ABA application, epidermal strips were perfused by washing (pipetting) four to five times with assay buffer supplemented with 10 µM ABA in 0.01 % EtOH. Low humidity drop experiments were conducted on 19-27-day-old seedlings grown vertically on 0.5 MS agar media in the CMP4030 plant growth chamber. Low humidity was induced by opening the lid of the 0.5 MS agar plates. At time points 0, 15 and 30 min after plate opening two seedlings were blended 4x ∼10 s in ∼50 mL deionized water and leaf epidermal tissue was collected through a 100 µm nylon mesh (Millipore, Billerica, MA) and mounted on a microscope slide for imaging. Experiments were performed in triplicates and ≥ 27 guard cell pairs were analyzed per experiment. Long term stress treatments were conducted on detached leaves of 20-24-day-old plants grown vertically on 0.5 MS agar media in the CMP4030 plant growth chamber. Four leaves were pre-incubated for 1–4 h in assay buffer at 22 °C and 100 µEm<sup>−2</sup>s<sup>−1</sup> and treatments were performed by addition of assay buffer supplemented with 10-fold concentrated EtOH (as solvent control for ABA), ABA, NaCl or sorbitol to obtain final concentrations of 0.01 % EtOH, 10 µM ABA, 100 mM NaCl or 300 mM sorbitol. 4 h after the treatments leaves were blended (see above) and leaf epidermal tissue was collected for imaging. Experiments were performed in triplicates with blinded treatments and epidermal fractions used for ABAleon2.1 emission ratio imaging were selected using the bright field channel. 24–40 guard cell pairs were analyzed per experiment.</p><p>For seedling imaging, 4-day-old seedlings were transferred to glass bottom dishes (MatTek, Ashland, MA) supplemented with 200 µL 0.25 MS, 10 mM MES-Tris (pH 5.6) and 0.7 % low melting point agarose (Promega) and grown vertically for an additional day in the CMP4030 plant growth chamber. Before microscopic analyses, 90 µL assay buffer was added. Treatments were conducted by pipetting 10 µL ABA solution or the respective amount of EtOH as solvent control diluted in assay buffer to reach a final concentration of 10–50 µM ABA and 0.01–0.05 % EtOH. To apply ABA to defined tissues, transparent modeling clay was used to divide each glass bottom dish into two isolated chambers before application of the growth media. Seedlings were placed on top of the growth media and modeling clay, such that either the hypocotyl base and root differentiation zone (shoot to root transport) or the root maturation zone (hypocotyl to root and root to hypocotyl transport) laid on the dry modeling clay. Long term treatments were performed on 5-day-old seedlings, which were transferred to glass bottom dishes (MatTek, Ashland, MA) supplemented with 200 µL 0.25 MS, 10 mM MES-Tris (pH 5.6) and 0.7 % low melting point agarose with addition of 0.01 % EtOH (as solvent control for ABA), 10 µM ABA, 100 mM NaCl or 300 mM sorbitol. 6 h after transfer 100 µL assay buffer supplemented with 0.01 % EtOH, 10 µM ABA, 100 mM NaCl or 300 mM sorbitol was added before the root maturation- and elongation zone were imaged. Regions of the root maturation zone with similar distance from the root tip were selected in the bright field channel before ratio images were acquired. Treatments were performed blinded and 8–10 seedlings were analyzed per treatment.</p><p>pRAB18-GFP plants (<xref ref-type="bibr" rid="bib40">Kim et al., 2011</xref>) were grown in soil in the CMP3244 plant growth chamber. To ensure high relative humidity (RH) conditions (70%) plants were kept under a plastic cover and sprayed with water twice a day. 2 days before the analyses, plants were removed from the growth chamber, placed in 25 % RH conditions and withheld from water supply. For the ABA treatment, detached leaves were floated for 4 h in 50 µM ABA prior to microscopic analyses.</p><p>Expression analyses based on cpVenus173, YFP or GFP emission were performed using an Eclipse TE2000-U microscope equipped with Plan 20x/0.40 ∞/0.17 WD 1.3 and Plan Apo 60x/1.20 WI ∞/0.15–0.18 WD 0.22 objectives (Nikon), a CascadeII 512 camera (Photometrics), a MFC2000 z-motor (Applied Scientific Instruments, Eugene, OR), a QLC-100 spinning disc (VisiTech international, Sunderland, UK), a CL-2000 Diode pumped crystal laser (LaserPhysics Inc., West Jordan, UT), a LS 300 Kr/Ar laser (Dynamic Laser, Boston, MA) and guided by Metamorph software version 7.7.7.0 (Molecular Devices). Images were analyzed, processed and calibrated in Fiji (<xref ref-type="bibr" rid="bib72">Schindelin et al., 2012</xref>).</p><p>ABAleon ratio-imaging was conducted according to <xref ref-type="bibr" rid="bib2">Allen et al. (1999)</xref> using an Eclipse TE300 microscope equipped with a Plan Fluor 10x/0.30 DIC L ∞/0.17 WD 16.0 for seedlings or a Plan Fluor 40x/1.30 Oil objective DIC H ∞/0.17 WD 0.2 for guard cells (Nikon, Tokyo, Japan), a Cool SNAP HQ camera (Photometrics, Tucson, AZ), a Mac 2002 System automatic controler, a CAMELEON filter set 71007A (D440/20, D485/40, D535/30; Chroma, Bellows Falls, VT) and guided by the MetaFluor software version 7.0r3 (Molecular Devices, Sunnyvale, CA). Images were acquired in intervals of 6 s using 200-250 ms exposure, Binning 4, Gain 2x (4x) and 20 MHz transfer speed. Images were analyzed and processed using Fiji (<xref ref-type="bibr" rid="bib72">Schindelin et al., 2012</xref>). Analyses of seedlings were standardized as treatments were performed 4 min after the experiments started and regions used for emission ratio analyses had identical areas and distances from each other. ABA response curves in the root maturation zone and the hypocotyl were analyzed by fitting <inline-formula><mml:math id="inf7"><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>a</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mi>i</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mfrac><mml:mi>t</mml:mi><mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:mfrac></mml:mrow></mml:math></inline-formula> , using SigmaPlot 10.0 (Systat, San Jose, CA), to either data of single measurements or combined datasets.</p></sec></sec></body><back><ack id="ack"><title>Acknowledgements</title><p>We thank Ashley J Pratt for help with <italic>in vitro</italic> analyses, members of the Schroeder lab, especially Hans-Henning Kunz, Shintaro Munemasa, Felix Hauser, Jiyoung Park and Benjamin Brandt for providing seeds, plasmids and for advice with ratiometric imaging. We thank Christian Waadt for assembling <xref ref-type="other" rid="video1">Video 1</xref>, Roger Y Tsien (UC San Diego) for providing generous access to equipment and for discussion, and Jörg Kudla (University of Münster) and Carsten Schultz (EMBL, Heidelberg) for providing plasmids. Research analyzing salt stress responses was supported by a grand from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (DE-FG02-03ER15449) to JIS.</p></ack><sec sec-type="additional-information"><title>Additional information</title><fn-group content-type="competing-interest"><title>Competing interests</title><fn fn-type="conflict" id="conf1"><p>The authors declare that no competing interests exist.</p></fn></fn-group><fn-group content-type="author-contribution"><title>Author contributions</title><fn fn-type="con" id="con1"><p>RW, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article</p></fn><fn fn-type="con" id="con2"><p>KH, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article, Contributed unpublished essential data or reagents</p></fn><fn fn-type="con" id="con3"><p>NN, Conception and design, Acquisition of data, Analysis and interpretation of data, Contributed unpublished essential data or reagents</p></fn><fn fn-type="con" id="con4"><p>CH, Acquisition of data, Analysis and interpretation of data</p></fn><fn fn-type="con" id="con5"><p>SRA, Acquisition of data, Analysis and interpretation of data</p></fn><fn fn-type="con" id="con6"><p>EDG, Analysis and interpretation of data, Drafting or revising the article</p></fn><fn fn-type="con" id="con7"><p>JIS, Conception and design, Analysis and interpretation of data, Drafting or revising the article</p></fn></fn-group></sec><sec sec-type="supplementary-material"><title>Additional files</title><supplementary-material id="SD1-data"><object-id pub-id-type="doi">10.7554/eLife.01739.021</object-id><label>Supplementary file 1.</label><caption><p>(<bold>A</bold>) Oligo-nucleotides used in this work. List of oligo-nucleotides with indicated Arabidopsis GeneBank ID (AGI) number of the gene or construct, the oligo-nucleotide name and 5′-3′-sequence, the restriction sites included in the oligo-nucleotide and the description for what it was used for. In the oligo-nucleotide sequences the restriction sites are indicated by italic letters and mutations or non gene-coding nucleotides are indicated by lower case letters. (<bold>B</bold>) Plasmids and constructs used and generated in this work. List of plasmids and constructs with indicated Arabidopsis GeneBank ID (AGI) number of the inserted gene or construct, the promoter included in the plasmid, the clone name, the restriction sites, which were used for cloning, the vector backbone of the clone with incorporated selection markers for bacteria and plants and the clone information. The clone information includes additional information about restriction sites, promoters, inserts and point mutations. Amp, ampicillin; Bar, BASTA; Hyg, hygromycin; Kan, kanamycin; XFP, fluorescent protein. (<bold>C</bold>) Transgenic Arabidopsis lines used and generated in this work. List of transgenic <italic>Arabidopsis thaliana</italic> plants with indicated ecotype, Arabidopsis GeneBank ID (AGI) of the mutated genes, gene names, mutant names and IDs, the name of the transgenic lines, the construct used for transformation, plant selection marker and description. Bar, BASTA; Hyg, hygromycin; Kan, kanamycin.</p><p><bold>DOI:</bold> <ext-link ext-link-type="doi" xlink:href="10.7554/eLife.01739.021">http://dx.doi.org/10.7554/eLife.01739.021</ext-link></p></caption><media mime-subtype="xlsx" mimetype="application" xlink:href="elife01739s001.xlsx"/></supplementary-material><sec sec-type="datasets"><title>Major datasets</title><p>The following previously published datasets were used:</p><p><related-object content-type="generated-dataset" document-id="Dataset ID and/or url" document-id-type="dataset" document-type="data" id="dataro1"><name><surname>Goedhart</surname><given-names>J</given-names></name>, <name><surname>Von Stetten</surname><given-names>D</given-names></name>, <name><surname>Noirclerc-Savoye</surname><given-names>M</given-names></name>, <name><surname>Lelimousin</surname><given-names>M</given-names></name>, <name><surname>Joosen</surname><given-names>L</given-names></name>, <name><surname>Hink</surname><given-names>MA</given-names></name>, <name><surname>Van Weeren</surname><given-names>L</given-names></name>, <name><surname>Gadella</surname><given-names>TWJ</given-names></name>, <name><surname>Royant</surname><given-names>A</given-names></name>, <year>2012</year><x>, </x><source>X-ray structure of the cyan fluorescent protein mTurquoise (K206A mutant)</source><x>, </x><object-id pub-id-type="art-access-id">2YE0</object-id><x>; </x><ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/explore/explore.do?structureId=2ye0">http://www.rcsb.org/pdb/explore/explore.do?structureId=2ye0</ext-link><x>, </x><comment>Publicly available at the RCSB Protein Data Bank (<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/">http://www.rcsb.org/</ext-link>).</comment></related-object></p><p><related-object content-type="generated-dataset" document-id="Dataset ID and/or url" document-id-type="dataset" document-type="data" id="dataro2"><name><surname>Miyazono</surname><given-names>K</given-names></name>, <name><surname>Miyakawa</surname><given-names>T</given-names></name>, <name><surname>Sawano</surname><given-names>Y</given-names></name>, <name><surname>Kubota</surname><given-names>K</given-names></name>, <name><surname>Kang</surname><given-names>HJ</given-names></name>, <name><surname>Asano</surname><given-names>A</given-names></name>, <name><surname>Miyauchi</surname><given-names>Y</given-names></name>, <name><surname>Takahashi</surname><given-names>M</given-names></name>, <name><surname>Zhi</surname><given-names>Y</given-names></name>, <name><surname>Fujita</surname><given-names>Y</given-names></name>, <name><surname>Yoshida</surname><given-names>T</given-names></name>, <name><surname>Kodaira</surname><given-names>K</given-names></name>, <name><surname>Yamaguchi-Shinozaki</surname><given-names>K</given-names></name>, <name><surname>Tanokura</surname><given-names>M</given-names></name>, <year>2009</year><x>, </x><source>Crystal structure of (+)-ABA-bound PYL1 in complex with ABI1</source><x>, </x><object-id pub-id-type="art-access-id">3JRQ</object-id><x>; </x><ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/explore/explore.do?structureId=3jrq">http://www.rcsb.org/pdb/explore/explore.do?structureId=3jrq</ext-link><x>, </x><comment>Publicly available at the RCSB Protein Data Bank (<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/">http://www.rcsb.org/</ext-link>).</comment></related-object></p><p><related-object content-type="generated-dataset" document-id="Dataset ID and/or url" document-id-type="dataset" document-type="data" id="dataro3"><name><surname>Rekas</surname><given-names>A</given-names></name>, <name><surname>Alattia</surname><given-names>JR</given-names></name>, <name><surname>Nagai</surname><given-names>T</given-names></name>, <name><surname>Miyawaki</surname><given-names>A</given-names></name>, <name><surname>Ikura</surname><given-names>M</given-names></name>, <year>2002</year><x>, </x><source>Crystal structure of a yellow fluorescent protein with improved maturation and reduce environmental sensitivity</source><x>, </x><object-id pub-id-type="art-access-id">1MYW</object-id><x>; </x><ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/explore/explore.do?structureId=1myw">http://www.rcsb.org/pdb/explore/explore.do?structureId=1myw</ext-link><x>, </x><comment>Publicly available at the RCSB Protein Data Bank (<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/">http://www.rcsb.org/</ext-link>).</comment></related-object></p><p><related-object content-type="generated-dataset" document-id="Dataset ID and/or url" document-id-type="dataset" document-type="data" id="dataro4"><name><surname>Nishimura</surname><given-names>N</given-names></name>, <name><surname>Hitomi</surname><given-names>K</given-names></name>, <name><surname>Arvai</surname><given-names>AS</given-names></name>, <name><surname>Rambo</surname><given-names>RP</given-names></name>, <name><surname>Hitomi</surname><given-names>C</given-names></name>, <name><surname>Cutler</surname><given-names>SR</given-names></name>, <name><surname>Schroeder</surname><given-names>JI</given-names></name>, <name><surname>Getzoff</surname><given-names>ED</given-names></name>, <year>2009</year><x>, </x><source>Crystal structure of dimeric abscisic acid (ABA) receptor pyrabactin resistance 1 (PYR1) with ABA-bound closed-lid and ABA-free open-lid subunits</source><x>, </x><object-id pub-id-type="art-access-id">3K3K</object-id><x>; </x><ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/explore/explore.do?structureId=3k3k">http://www.rcsb.org/pdb/explore/explore.do?structureId=3k3k</ext-link><x>, </x><comment>Publicly available at the RCSB Protein Data Bank (<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/">http://www.rcsb.org/</ext-link>).</comment></related-object></p></sec></sec><ref-list><title>References</title><ref id="bib1"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Alford</surname><given-names>SC</given-names></name><name><surname>Wu</surname><given-names>J</given-names></name><name><surname>Zhao</surname><given-names>Y</given-names></name><name><surname>Campbell</surname><given-names>RE</given-names></name><name><surname>Knöpfel</surname><given-names>T</given-names></name></person-group><year>2013</year><article-title>Optogenetic reporters</article-title><source>Biologie Cellulaire</source><volume>105</volume><fpage>14</fpage><lpage>29</lpage><pub-id pub-id-type="doi">10.1111/boc.201200054</pub-id></element-citation></ref><ref id="bib2"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Allen</surname><given-names>GJ</given-names></name><name><surname>Kwak</surname><given-names>JM</given-names></name><name><surname>Chu</surname><given-names>SP</given-names></name><name><surname>Llopis</surname><given-names>J</given-names></name><name><surname>Tsien</surname><given-names>RY</given-names></name><name><surname>Harper</surname><given-names>JF</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>1999</year><article-title>Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells</article-title><source>Plant Journal</source><volume>19</volume><fpage>735</fpage><lpage>747</lpage><pub-id pub-id-type="doi">10.1046/j.1365-313x.1999.00574.x</pub-id></element-citation></ref><ref id="bib3"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Arai</surname><given-names>R</given-names></name><name><surname>Wriggers</surname><given-names>W</given-names></name><name><surname>Nishikawa</surname><given-names>Y</given-names></name><name><surname>Nagamune</surname><given-names>T</given-names></name><name><surname>Fujisawa</surname><given-names>T</given-names></name></person-group><year>2004</year><article-title>Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering</article-title><source>Proteins</source><volume>57</volume><fpage>829</fpage><lpage>838</lpage><pub-id pub-id-type="doi">10.1002/prot.20244</pub-id></element-citation></ref><ref id="bib4"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bauer</surname><given-names>H</given-names></name><name><surname>Ache</surname><given-names>P</given-names></name><name><surname>Lautner</surname><given-names>S</given-names></name><name><surname>Fromm</surname><given-names>J</given-names></name><name><surname>Hartung</surname><given-names>W</given-names></name><name><surname>Al-Rasheid</surname><given-names>KA</given-names></name><name><surname>Sonnewald</surname><given-names>S</given-names></name><name><surname>Sonnewald</surname><given-names>U</given-names></name><name><surname>Kneitz</surname><given-names>S</given-names></name><name><surname>Lachmann</surname><given-names>N</given-names></name><name><surname>Mendel</surname><given-names>RR</given-names></name><name><surname>Bittner</surname><given-names>F</given-names></name><name><surname>Hetherington</surname><given-names>AM</given-names></name><name><surname>Hedrich</surname><given-names>R</given-names></name></person-group><year>2013</year><article-title>The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis</article-title><source>Current Biology</source><volume>23</volume><fpage>53</fpage><lpage>57</lpage><pub-id pub-id-type="doi">10.1016/j.cub.2012.11.022</pub-id></element-citation></ref><ref id="bib5"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bibikova</surname><given-names>TN</given-names></name><name><surname>Jacob</surname><given-names>T</given-names></name><name><surname>Dahse</surname><given-names>I</given-names></name><name><surname>Gilroy</surname><given-names>S</given-names></name></person-group><year>1998</year><article-title>Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in <italic>Arabidopsis thaliana</italic></article-title><source>Development</source><volume>125</volume><fpage>2925</fpage><lpage>2934</lpage></element-citation></ref><ref id="bib6"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Blatt</surname><given-names>MR</given-names></name><name><surname>Armstrong</surname><given-names>F</given-names></name></person-group><year>1993</year><article-title>K<sup>+</sup> channels of stomatal guard cells: abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH</article-title><source>Planta</source><volume>191</volume><fpage>330</fpage><lpage>341</lpage><pub-id pub-id-type="doi">10.1007/BF00195690</pub-id></element-citation></ref><ref id="bib7"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Boursiac</surname><given-names>Y</given-names></name><name><surname>Léran</surname><given-names>S</given-names></name><name><surname>Corratgé-Faillie</surname><given-names>C</given-names></name><name><surname>Gojon</surname><given-names>A</given-names></name><name><surname>Krouk</surname><given-names>G</given-names></name><name><surname>Lacombe</surname><given-names>B</given-names></name></person-group><year>2013</year><article-title>ABA transport and transporters</article-title><source>Trends Plant Science</source><volume>18</volume><fpage>325</fpage><lpage>333</lpage><pub-id pub-id-type="doi">10.1016/j.tplants.2013.01.007</pub-id></element-citation></ref><ref id="bib8"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Brandt</surname><given-names>B</given-names></name><name><surname>Brodsky</surname><given-names>DE</given-names></name><name><surname>Xue</surname><given-names>S</given-names></name><name><surname>Negi</surname><given-names>J</given-names></name><name><surname>Iba</surname><given-names>K</given-names></name><name><surname>Kangasjärvi</surname><given-names>J</given-names></name><name><surname>Ghassemian</surname><given-names>M</given-names></name><name><surname>Stephan</surname><given-names>AB</given-names></name><name><surname>Hu</surname><given-names>H</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>2012</year><article-title>Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>109</volume><fpage>10593</fpage><lpage>10598</lpage><pub-id pub-id-type="doi">10.1073/pnas.1116590109</pub-id></element-citation></ref><ref id="bib9"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Brunoud</surname><given-names>G</given-names></name><name><surname>Wells</surname><given-names>DM</given-names></name><name><surname>Oliva</surname><given-names>M</given-names></name><name><surname>Larrieu</surname><given-names>A</given-names></name><name><surname>Mirabet</surname><given-names>V</given-names></name><name><surname>Burrow</surname><given-names>AH</given-names></name><name><surname>Beeckman</surname><given-names>T</given-names></name><name><surname>Kepinski</surname><given-names>S</given-names></name><name><surname>Traas</surname><given-names>J</given-names></name><name><surname>Bennett</surname><given-names>MJ</given-names></name><name><surname>Vernoux</surname><given-names>T</given-names></name></person-group><year>2012</year><article-title>A novel sensor to map auxin response and distribution at high spatio-temporal resolution</article-title><source>Nature</source><volume>482</volume><fpage>103</fpage><lpage>106</lpage><pub-id pub-id-type="doi">10.1038/nature10791</pub-id></element-citation></ref><ref id="bib10"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Christmann</surname><given-names>A</given-names></name><name><surname>Hoffmann</surname><given-names>T</given-names></name><name><surname>Teplova</surname><given-names>I</given-names></name><name><surname>Grill</surname><given-names>E</given-names></name><name><surname>Müller</surname><given-names>A</given-names></name></person-group><year>2005</year><article-title>Generation of active pools of abscisic acid revealed by <italic>in vivo</italic> imaging of water-stressed Arabidopsis</article-title><source>Plant Physiology</source><volume>137</volume><fpage>209</fpage><lpage>219</lpage><pub-id pub-id-type="doi">10.1104/pp.104.053082</pub-id></element-citation></ref><ref id="bib11"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Christmann</surname><given-names>A</given-names></name><name><surname>Weiler</surname><given-names>EW</given-names></name><name><surname>Steudle</surname><given-names>E</given-names></name><name><surname>Grill</surname><given-names>E</given-names></name></person-group><year>2007</year><article-title>A hydraulic signal in root-to-shoot signalling of water shortage</article-title><source>Plant Journal</source><volume>52</volume><fpage>167</fpage><lpage>174</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2007.03234.x</pub-id></element-citation></ref><ref id="bib12"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Clough</surname><given-names>SJ</given-names></name><name><surname>Bent</surname><given-names>AF</given-names></name></person-group><year>1998</year><article-title>Floral dip: a simplified method for <italic>Agrobacterium</italic>-mediated transformation of <italic>Arabidopsis thaliana</italic></article-title><source>The Plant Journal</source><volume>16</volume><fpage>735</fpage><lpage>743</lpage></element-citation></ref><ref id="bib13"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name><name><surname>Finkelstein</surname><given-names>RR</given-names></name><name><surname>Abrams</surname><given-names>SR</given-names></name></person-group><year>2010</year><article-title>Abscisic acid: emergence of a core signaling network</article-title><source>Annual Review of Plant Biology</source><volume>61</volume><fpage>651</fpage><lpage>679</lpage><pub-id pub-id-type="doi">10.1146/annurev-arplant-042809-112122</pub-id></element-citation></ref><ref id="bib14"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Duan</surname><given-names>L</given-names></name><name><surname>Dietrich</surname><given-names>D</given-names></name><name><surname>Ng</surname><given-names>CH</given-names></name><name><surname>Chan</surname><given-names>PM</given-names></name><name><surname>Bhalerao</surname><given-names>R</given-names></name><name><surname>Bennett</surname><given-names>MJ</given-names></name><name><surname>Dinneny</surname><given-names>JR</given-names></name></person-group><year>2013</year><article-title>Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings</article-title><source>Plant Cell</source><volume>25</volume><fpage>324</fpage><lpage>341</lpage><pub-id pub-id-type="doi">10.1105/tpc.112.107227</pub-id></element-citation></ref><ref id="bib15"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dupeux</surname><given-names>F</given-names></name><name><surname>Santiago</surname><given-names>J</given-names></name><name><surname>Betz</surname><given-names>K</given-names></name><name><surname>Twycross</surname><given-names>J</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Rodriguez</surname><given-names>L</given-names></name><name><surname>Gonzalez-Guzman</surname><given-names>M</given-names></name><name><surname>Jensen</surname><given-names>MR</given-names></name><name><surname>Krasnogor</surname><given-names>N</given-names></name><name><surname>Blackledge</surname><given-names>M</given-names></name><name><surname>Holdsworth</surname><given-names>M</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name><name><surname>Márquez</surname><given-names>JA</given-names></name></person-group><year>2011</year><article-title>A thermodynamic switch modulates abscisic acid receptor sensitivity</article-title><source>The EMBO Journal</source><volume>30</volume><fpage>4171</fpage><lpage>4184</lpage><pub-id pub-id-type="doi">10.1038/emboj.2011.294</pub-id></element-citation></ref><ref id="bib16"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Emsley</surname><given-names>P</given-names></name><name><surname>Lohkamp</surname><given-names>B</given-names></name><name><surname>Scott</surname><given-names>WG</given-names></name><name><surname>Cowtan</surname><given-names>K</given-names></name></person-group><year>2010</year><article-title>Features and development of Coot</article-title><source>Acta Crystallographica Section D, Biological Crystallography</source><volume>66</volume><fpage>486</fpage><lpage>501</lpage><pub-id pub-id-type="doi">10.1107/S0907444910007493</pub-id></element-citation></ref><ref id="bib17"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Endo</surname><given-names>A</given-names></name><name><surname>Sawada</surname><given-names>Y</given-names></name><name><surname>Takahashi</surname><given-names>H</given-names></name><name><surname>Okamoto</surname><given-names>M</given-names></name><name><surname>Ikegami</surname><given-names>K</given-names></name><name><surname>Koiwai</surname><given-names>H</given-names></name><name><surname>Seo</surname><given-names>M</given-names></name><name><surname>Toyomasu</surname><given-names>T</given-names></name><name><surname>Mitsuhashi</surname><given-names>W</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name><name><surname>Nakazono</surname><given-names>M</given-names></name><name><surname>Kamiya</surname><given-names>Y</given-names></name><name><surname>Koshiba</surname><given-names>T</given-names></name><name><surname>Nambara</surname><given-names>E</given-names></name></person-group><year>2008</year><article-title>Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells</article-title><source>Plant Physiology</source><volume>147</volume><fpage>1984</fpage><lpage>1993</lpage><pub-id pub-id-type="doi">10.1104/pp.108.116632</pub-id></element-citation></ref><ref id="bib18"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Forcat</surname><given-names>S</given-names></name><name><surname>Bennett</surname><given-names>MH</given-names></name><name><surname>Mansfield</surname><given-names>JW</given-names></name><name><surname>Grant</surname><given-names>MR</given-names></name></person-group><year>2008</year><article-title>A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress</article-title><source>Plant Methods</source><volume>4</volume><fpage>16</fpage><pub-id pub-id-type="doi">10.1186/1746-4811-4-16</pub-id></element-citation></ref><ref id="bib19"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Fujii</surname><given-names>H</given-names></name><name><surname>Chinnusamy</surname><given-names>V</given-names></name><name><surname>Rodrigues</surname><given-names>A</given-names></name><name><surname>Rubio</surname><given-names>S</given-names></name><name><surname>Antoni</surname><given-names>R</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Sheen</surname><given-names>J</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name><name><surname>Zhu</surname><given-names>JK</given-names></name></person-group><year>2009</year><article-title><italic>In vitro</italic> reconstitution of an abscisic acid signalling pathway</article-title><source>Nature</source><volume>462</volume><fpage>660</fpage><lpage>664</lpage><pub-id pub-id-type="doi">10.1038/nature08599</pub-id></element-citation></ref><ref id="bib20"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Furihata</surname><given-names>T</given-names></name><name><surname>Maruyama</surname><given-names>K</given-names></name><name><surname>Fujita</surname><given-names>Y</given-names></name><name><surname>Umezawa</surname><given-names>T</given-names></name><name><surname>Yoshida</surname><given-names>R</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name><name><surname>Yamaguchi-Shinozaki</surname><given-names>K</given-names></name></person-group><year>2006</year><article-title>Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>103</volume><fpage>1988</fpage><lpage>1993</lpage><pub-id pub-id-type="doi">10.1073/pnas.0505667103</pub-id></element-citation></ref><ref id="bib21"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Geiger</surname><given-names>D</given-names></name><name><surname>Scherzer</surname><given-names>S</given-names></name><name><surname>Mumm</surname><given-names>P</given-names></name><name><surname>Stange</surname><given-names>A</given-names></name><name><surname>Marten</surname><given-names>I</given-names></name><name><surname>Bauer</surname><given-names>H</given-names></name><name><surname>Ache</surname><given-names>P</given-names></name><name><surname>Matschi</surname><given-names>S</given-names></name><name><surname>Liese</surname><given-names>A</given-names></name><name><surname>Al-Rasheid</surname><given-names>KA</given-names></name><name><surname>Romeis</surname><given-names>T</given-names></name><name><surname>Hedrich</surname><given-names>R</given-names></name></person-group><year>2009</year><article-title>Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>106</volume><fpage>21425</fpage><lpage>21430</lpage><pub-id pub-id-type="doi">10.1073/pnas.0912021106</pub-id></element-citation></ref><ref id="bib22"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Geng</surname><given-names>Y</given-names></name><name><surname>Wu</surname><given-names>R</given-names></name><name><surname>Wee</surname><given-names>CW</given-names></name><name><surname>Xie</surname><given-names>F</given-names></name><name><surname>Wei</surname><given-names>X</given-names></name><name><surname>Chan</surname><given-names>PM</given-names></name><name><surname>Tham</surname><given-names>C</given-names></name><name><surname>Duan</surname><given-names>L</given-names></name><name><surname>Dinneny</surname><given-names>JR</given-names></name></person-group><year>2013</year><article-title>A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis</article-title><source>Plant Cell</source><volume>25</volume><fpage>2132</fpage><lpage>2154</lpage><pub-id pub-id-type="doi">10.1105/tpc.113.112896</pub-id></element-citation></ref><ref id="bib23"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Giepmans</surname><given-names>BN</given-names></name><name><surname>Adams</surname><given-names>SR</given-names></name><name><surname>Ellisman</surname><given-names>MH</given-names></name><name><surname>Tsien</surname><given-names>RY</given-names></name></person-group><year>2006</year><article-title>The fluorescent toolbox for assessing protein location and function</article-title><source>Science</source><volume>312</volume><fpage>217</fpage><lpage>224</lpage><pub-id pub-id-type="doi">10.1126/science.1124618</pub-id></element-citation></ref><ref id="bib24"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Goedhart</surname><given-names>J</given-names></name><name><surname>van Weeren</surname><given-names>L</given-names></name><name><surname>Hink</surname><given-names>MA</given-names></name><name><surname>Vischer</surname><given-names>NO</given-names></name><name><surname>Jalink</surname><given-names>K</given-names></name><name><surname>Gadella</surname><given-names>TW</given-names></name></person-group><year>2010</year><article-title>Bright cyan fluorescent protein variants identified by fluorescence lifetime screening</article-title><source>Nature Methods</source><volume>7</volume><fpage>137</fpage><lpage>139</lpage><pub-id pub-id-type="doi">10.1038/nmeth.1415</pub-id></element-citation></ref><ref id="bib25"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Goedhart</surname><given-names>J</given-names></name><name><surname>von Stetten</surname><given-names>D</given-names></name><name><surname>Noirclerc-Savoye</surname><given-names>M</given-names></name><name><surname>Lelimousin</surname><given-names>M</given-names></name><name><surname>Joosen</surname><given-names>L</given-names></name><name><surname>Hink</surname><given-names>MA</given-names></name><name><surname>van Weeren</surname><given-names>L</given-names></name><name><surname>Gadella</surname><given-names>TW</given-names><suffix>Jnr</suffix></name><name><surname>Royant</surname><given-names>A</given-names></name></person-group><year>2012</year><article-title>Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%</article-title><source>Nature Communications</source><volume>3</volume><fpage>751</fpage><pub-id pub-id-type="doi">10.1038/ncomms1738</pub-id></element-citation></ref><ref id="bib26"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hao</surname><given-names>Q</given-names></name><name><surname>Yin</surname><given-names>P</given-names></name><name><surname>Li</surname><given-names>W</given-names></name><name><surname>Wang</surname><given-names>L</given-names></name><name><surname>Yan</surname><given-names>C</given-names></name><name><surname>Lin</surname><given-names>Z</given-names></name><name><surname>Wu</surname><given-names>JZ</given-names></name><name><surname>Wang</surname><given-names>J</given-names></name><name><surname>Yan</surname><given-names>SF</given-names></name><name><surname>Yan</surname><given-names>N</given-names></name></person-group><year>2011</year><article-title>The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins</article-title><source>Molecular Cell</source><volume>42</volume><fpage>662</fpage><lpage>672</lpage><pub-id pub-id-type="doi">10.1016/j.molcel.2011.05.011</pub-id></element-citation></ref><ref id="bib27"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Harris</surname><given-names>MJ</given-names></name><name><surname>Outlaw</surname><given-names>WH</given-names></name><name><surname>Mertens</surname><given-names>R</given-names></name><name><surname>Weiler</surname><given-names>EW</given-names></name></person-group><year>1988</year><article-title>Water-stress-induced changes in the abscisic acid content of guard cells and other cells of <italic>Vicia faba</italic> L. leaves as determined by enzyme-amplified immunoassay</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>85</volume><fpage>2584</fpage><lpage>2588</lpage></element-citation></ref><ref id="bib28"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Harris</surname><given-names>MJ</given-names></name><name><surname>Outlaw</surname><given-names>WH</given-names></name></person-group><year>1991</year><article-title>Rapid adjustment of guard-cell abscisic Acid levels to current leaf-water status</article-title><source>Plant Physiology</source><volume>95</volume><fpage>171</fpage><lpage>173</lpage><pub-id pub-id-type="doi">10.1104/pp.95.1.171</pub-id></element-citation></ref><ref id="bib29"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hauser</surname><given-names>F</given-names></name><name><surname>Waadt</surname><given-names>R</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>2011</year><article-title>Evolution of abscisic acid synthesis and signaling mechanisms</article-title><source>Current Biology</source><volume>21</volume><fpage>R346</fpage><lpage>R355</lpage><pub-id pub-id-type="doi">10.1016/j.cub.2011.03.015</pub-id></element-citation></ref><ref id="bib30"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hetherington</surname><given-names>AM</given-names></name><name><surname>Woodward</surname><given-names>FI</given-names></name></person-group><year>2003</year><article-title>The role of stomata in sensing and driving environmental change</article-title><source>Nature</source><volume>424</volume><fpage>901</fpage><lpage>908</lpage><pub-id pub-id-type="doi">10.1038/nature01843</pub-id></element-citation></ref><ref id="bib31"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ikegami</surname><given-names>K</given-names></name><name><surname>Okamoto</surname><given-names>M</given-names></name><name><surname>Seo</surname><given-names>M</given-names></name><name><surname>Koshiba</surname><given-names>T</given-names></name></person-group><year>2009</year><article-title>Activation of abscisic acid biosynthesis in the leaves of <italic>Arabidopsis thaliana</italic> in response to water deficit</article-title><source>Journal of Plant Research</source><volume>122</volume><fpage>235</fpage><lpage>243</lpage><pub-id pub-id-type="doi">10.1007/s10265-008-0201-9</pub-id></element-citation></ref><ref id="bib32"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ishitani</surname><given-names>M</given-names></name><name><surname>Xiong</surname><given-names>L</given-names></name><name><surname>Stevenson</surname><given-names>B</given-names></name><name><surname>Zhu</surname><given-names>JK</given-names></name></person-group><year>1997</year><article-title>Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways</article-title><source>Plant Cell</source><volume>9</volume><fpage>1935</fpage><lpage>1949</lpage><pub-id pub-id-type="doi">10.1105/tpc.9.11.1935</pub-id></element-citation></ref><ref id="bib33"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Islam</surname><given-names>MM</given-names></name><name><surname>Hossain</surname><given-names>MA</given-names></name><name><surname>Jannat</surname><given-names>R</given-names></name><name><surname>Munemasa</surname><given-names>S</given-names></name><name><surname>Nakamura</surname><given-names>Y</given-names></name><name><surname>Mori</surname><given-names>IC</given-names></name><name><surname>Murata</surname><given-names>Y</given-names></name></person-group><year>2010</year><article-title>Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA</article-title><source>Plant and Cell Physiology</source><volume>51</volume><fpage>1721</fpage><lpage>1730</lpage><pub-id pub-id-type="doi">10.1093/pcp/pcq131</pub-id></element-citation></ref><ref id="bib34"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Israelsson</surname><given-names>M</given-names></name><name><surname>Siegel</surname><given-names>RS</given-names></name><name><surname>Young</surname><given-names>J</given-names></name><name><surname>Hashimoto</surname><given-names>M</given-names></name><name><surname>Iba</surname><given-names>K</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>2006</year><article-title>Guard cell ABA and CO<sub>2</sub> signaling network updates and Ca<sup>2+</sup> sensor priming hypothesis</article-title><source>Current Opinion in Plant Biology</source><volume>9</volume><fpage>654</fpage><lpage>663</lpage><pub-id pub-id-type="doi">10.1016/j.pbi.2006.09.006</pub-id></element-citation></ref><ref id="bib34a"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Jones</surname><given-names>AM</given-names></name><name><surname>Danielson</surname><given-names>JÅH</given-names></name><name><surname>ManojKumar</surname><given-names>SN</given-names></name><name><surname>Lanquar</surname><given-names>V</given-names></name><name><surname>Grossmann</surname><given-names>G</given-names></name><name><surname>Frommer</surname><given-names>WB</given-names></name></person-group><year>2014</year><article-title>Abscisic acid dynamics in roots detected with genetically encoded FRET sensors</article-title><source>eLife</source><volume>3</volume><fpage>e01741</fpage><pub-id pub-id-type="doi">10.7554/eLife.01741</pub-id></element-citation></ref><ref id="bib35"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Joshi-Saha</surname><given-names>A</given-names></name><name><surname>Valon</surname><given-names>C</given-names></name><name><surname>Leung</surname><given-names>J</given-names></name></person-group><year>2011</year><article-title>A brand new START: abscisic acid perception and transduction in the guard cell</article-title><source>Science Signaling</source><volume>4</volume><fpage>re4</fpage><pub-id pub-id-type="doi">10.1126/scisignal.2002164</pub-id></element-citation></ref><ref id="bib36"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kang</surname><given-names>J</given-names></name><name><surname>Hwang</surname><given-names>JU</given-names></name><name><surname>Lee</surname><given-names>M</given-names></name><name><surname>Kim</surname><given-names>YY</given-names></name><name><surname>Assmann</surname><given-names>SM</given-names></name><name><surname>Martinoia</surname><given-names>E</given-names></name><name><surname>Lee</surname><given-names>Y</given-names></name></person-group><year>2010</year><article-title>PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>107</volume><fpage>2355</fpage><lpage>2360</lpage><pub-id pub-id-type="doi">10.1073/pnas.0909222107</pub-id></element-citation></ref><ref id="bib37"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kanno</surname><given-names>Y</given-names></name><name><surname>Hanada</surname><given-names>A</given-names></name><name><surname>Chiba</surname><given-names>Y</given-names></name><name><surname>Ichikawa</surname><given-names>T</given-names></name><name><surname>Nakazawa</surname><given-names>M</given-names></name><name><surname>Matsui</surname><given-names>M</given-names></name><name><surname>Koshiba</surname><given-names>T</given-names></name><name><surname>Kamiya</surname><given-names>Y</given-names></name><name><surname>Seo</surname><given-names>M</given-names></name></person-group><year>2012</year><article-title>Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>109</volume><fpage>9653</fpage><lpage>9658</lpage><pub-id pub-id-type="doi">10.1073/pnas.1203567109</pub-id></element-citation></ref><ref id="bib38"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kepka</surname><given-names>M</given-names></name><name><surname>Benson</surname><given-names>CL</given-names></name><name><surname>Gonugunta</surname><given-names>VK</given-names></name><name><surname>Nelson</surname><given-names>KM</given-names></name><name><surname>Christmann</surname><given-names>A</given-names></name><name><surname>Grill</surname><given-names>E</given-names></name><name><surname>Abrams</surname><given-names>SR</given-names></name></person-group><year>2011</year><article-title>Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes</article-title><source>Plant Physiology</source><volume>157</volume><fpage>2108</fpage><lpage>2119</lpage><pub-id pub-id-type="doi">10.1104/pp.111.182584</pub-id></element-citation></ref><ref id="bib39"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kim</surname><given-names>TH</given-names></name><name><surname>Böhmer</surname><given-names>M</given-names></name><name><surname>Hu</surname><given-names>H</given-names></name><name><surname>Nishimura</surname><given-names>N</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>2010</year><article-title>Guard cell signal transduction network: advances in understanding abscisic acid, CO<sub>2</sub>, and Ca<sup>2+</sup> signaling</article-title><source>Annual Review of Plant Biology</source><volume>61</volume><fpage>561</fpage><lpage>591</lpage><pub-id pub-id-type="doi">10.1146/annurev-arplant-042809-112226</pub-id></element-citation></ref><ref id="bib40"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kim</surname><given-names>TH</given-names></name><name><surname>Hauser</surname><given-names>F</given-names></name><name><surname>Ha</surname><given-names>T</given-names></name><name><surname>Xue</surname><given-names>S</given-names></name><name><surname>Böhmer</surname><given-names>M</given-names></name><name><surname>Nishimura</surname><given-names>N</given-names></name><name><surname>Munemasa</surname><given-names>S</given-names></name><name><surname>Hubbard</surname><given-names>K</given-names></name><name><surname>Peine</surname><given-names>N</given-names></name><name><surname>Lee</surname><given-names>BH</given-names></name><name><surname>Lee</surname><given-names>S</given-names></name><name><surname>Robert</surname><given-names>N</given-names></name><name><surname>Parker</surname><given-names>JE</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>2011</year><article-title>Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway</article-title><source>Current Biology</source><volume>21</volume><fpage>990</fpage><lpage>997</lpage><pub-id pub-id-type="doi">10.1016/j.cub.2011.04.045</pub-id></element-citation></ref><ref id="bib41"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kobayashi</surname><given-names>Y</given-names></name><name><surname>Murata</surname><given-names>M</given-names></name><name><surname>Minami</surname><given-names>H</given-names></name><name><surname>Yamamoto</surname><given-names>S</given-names></name><name><surname>Kagaya</surname><given-names>Y</given-names></name><name><surname>Hobo</surname><given-names>T</given-names></name><name><surname>Yamamoto</surname><given-names>A</given-names></name><name><surname>Hattori</surname><given-names>T</given-names></name></person-group><year>2005</year><article-title>Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors</article-title><source>Plant Journal</source><volume>44</volume><fpage>939</fpage><lpage>949</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2005.02583.x</pub-id></element-citation></ref><ref id="bib42"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Krebs</surname><given-names>M</given-names></name><name><surname>Held</surname><given-names>K</given-names></name><name><surname>Binder</surname><given-names>A</given-names></name><name><surname>Hashimoto</surname><given-names>K</given-names></name><name><surname>Den Herder</surname><given-names>G</given-names></name><name><surname>Parniske</surname><given-names>M</given-names></name><name><surname>Kudla</surname><given-names>J</given-names></name><name><surname>Schumacher</surname><given-names>K</given-names></name></person-group><year>2012</year><article-title>FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca<sup>2+</sup> dynamics</article-title><source>Plant Journal</source><volume>69</volume><fpage>181</fpage><lpage>192</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2011.04780.x</pub-id></element-citation></ref><ref id="bib43"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kuromori</surname><given-names>T</given-names></name><name><surname>Miyaji</surname><given-names>T</given-names></name><name><surname>Yabuuchi</surname><given-names>H</given-names></name><name><surname>Shimizu</surname><given-names>H</given-names></name><name><surname>Sugimoto</surname><given-names>E</given-names></name><name><surname>Kamiya</surname><given-names>A</given-names></name><name><surname>Moriyama</surname><given-names>Y</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name></person-group><year>2010</year><article-title>ABC transporter AtABCG25 is involved in abscisic acid transport and responses</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>107</volume><fpage>2361</fpage><lpage>2366</lpage><pub-id pub-id-type="doi">10.1073/pnas.0912516107</pub-id></element-citation></ref><ref id="bib44"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kuromori</surname><given-names>T</given-names></name><name><surname>Sugimoto</surname><given-names>E</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name></person-group><year>2011</year><article-title>Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility</article-title><source>Plant Journal</source><volume>67</volume><fpage>885</fpage><lpage>894</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2011.04641.x</pub-id></element-citation></ref><ref id="bib45"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lång</surname><given-names>V</given-names></name><name><surname>Palva</surname><given-names>ET</given-names></name></person-group><year>1992</year><article-title>The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of <italic>Arabidopsis thaliana</italic> (L.) Heynh</article-title><source>Plant Molecular Biology</source><volume>20</volume><fpage>951</fpage><lpage>962</lpage></element-citation></ref><ref id="bib46"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lee</surname><given-names>KH</given-names></name><name><surname>Piao</surname><given-names>HL</given-names></name><name><surname>Kim</surname><given-names>HY</given-names></name><name><surname>Choi</surname><given-names>SM</given-names></name><name><surname>Jiang</surname><given-names>F</given-names></name><name><surname>Hartung</surname><given-names>W</given-names></name><name><surname>Hwang</surname><given-names>I</given-names></name><name><surname>Kwak</surname><given-names>JM</given-names></name><name><surname>Lee</surname><given-names>IJ</given-names></name></person-group><year>2006</year><article-title>Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid</article-title><source>Cell</source><volume>126</volume><fpage>1109</fpage><lpage>1120</lpage><pub-id pub-id-type="doi">10.1016/j.cell.2006.07.034</pub-id></element-citation></ref><ref id="bib47"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lee</surname><given-names>SC</given-names></name><name><surname>Lan</surname><given-names>W</given-names></name><name><surname>Buchanan</surname><given-names>BB</given-names></name><name><surname>Luan</surname><given-names>S</given-names></name></person-group><year>2009</year><article-title>A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>106</volume><fpage>21419</fpage><lpage>21424</lpage><pub-id pub-id-type="doi">10.1073/pnas.0910601106</pub-id></element-citation></ref><ref id="bib48"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ma</surname><given-names>Y</given-names></name><name><surname>Szostkiewicz</surname><given-names>I</given-names></name><name><surname>Korte</surname><given-names>A</given-names></name><name><surname>Moes</surname><given-names>D</given-names></name><name><surname>Yang</surname><given-names>Y</given-names></name><name><surname>Christmann</surname><given-names>A</given-names></name><name><surname>Grill</surname><given-names>E</given-names></name></person-group><year>2009</year><article-title>Regulators of PP2C phosphatase activity function as abscisic acid sensors</article-title><source>Science</source><volume>324</volume><fpage>1064</fpage><lpage>1068</lpage><pub-id pub-id-type="doi">10.1126/science.1172408</pub-id></element-citation></ref><ref id="bib49"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Melcher</surname><given-names>K</given-names></name><name><surname>Ng</surname><given-names>LM</given-names></name><name><surname>Zhou</surname><given-names>XE</given-names></name><name><surname>Soon</surname><given-names>FF</given-names></name><name><surname>Xu</surname><given-names>Y</given-names></name><name><surname>Suino-Powell</surname><given-names>KM</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Weiner</surname><given-names>JJ</given-names></name><name><surname>Fujii</surname><given-names>H</given-names></name><name><surname>Chinnusamy</surname><given-names>V</given-names></name><name><surname>Kovach</surname><given-names>A</given-names></name><name><surname>Li</surname><given-names>J</given-names></name><name><surname>Wang</surname><given-names>Y</given-names></name><name><surname>Li</surname><given-names>J</given-names></name><name><surname>Peterson</surname><given-names>FC</given-names></name><name><surname>Jensen</surname><given-names>DR</given-names></name><name><surname>Yong</surname><given-names>EL</given-names></name><name><surname>Volkman</surname><given-names>BF</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Zhu</surname><given-names>JK</given-names></name><name><surname>Xu</surname><given-names>HE</given-names></name></person-group><year>2009</year><article-title>A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors</article-title><source>Nature</source><volume>462</volume><fpage>602</fpage><lpage>608</lpage><pub-id pub-id-type="doi">10.1038/nature08613</pub-id></element-citation></ref><ref id="bib50"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Miyazono</surname><given-names>K</given-names></name><name><surname>Miyakawa</surname><given-names>T</given-names></name><name><surname>Sawano</surname><given-names>Y</given-names></name><name><surname>Kubota</surname><given-names>K</given-names></name><name><surname>Kang</surname><given-names>HJ</given-names></name><name><surname>Asano</surname><given-names>A</given-names></name><name><surname>Miyauchi</surname><given-names>Y</given-names></name><name><surname>Takahashi</surname><given-names>M</given-names></name><name><surname>Zhi</surname><given-names>Y</given-names></name><name><surname>Fujita</surname><given-names>Y</given-names></name><name><surname>Yoshida</surname><given-names>T</given-names></name><name><surname>Kodaira</surname><given-names>KS</given-names></name><name><surname>Yamaguchi-Shinozaki</surname><given-names>K</given-names></name><name><surname>Tanokura</surname><given-names>M</given-names></name></person-group><year>2009</year><article-title>Structural basis of abscisic acid signalling</article-title><source>Nature</source><volume>462</volume><fpage>609</fpage><lpage>614</lpage><pub-id pub-id-type="doi">10.1038/nature08583</pub-id></element-citation></ref><ref id="bib51"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Mosquna</surname><given-names>A</given-names></name><name><surname>Peterson</surname><given-names>FC</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Lozano-Juste</surname><given-names>J</given-names></name><name><surname>Volkman</surname><given-names>BF</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name></person-group><year>2011</year><article-title>Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>108</volume><fpage>20838</fpage><lpage>20843</lpage><pub-id pub-id-type="doi">10.1073/pnas.1112838108</pub-id></element-citation></ref><ref id="bib52"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Muday</surname><given-names>GK</given-names></name><name><surname>Rahman</surname><given-names>A</given-names></name><name><surname>Binder</surname><given-names>BM</given-names></name></person-group><year>2012</year><article-title>Auxin and ethylene: collaborators or competitors?</article-title><source>Trends in Plant Science</source><volume>17</volume><fpage>181</fpage><lpage>195</lpage><pub-id pub-id-type="doi">10.1016/j.tplants.2012.02.001</pub-id></element-citation></ref><ref id="bib53"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nagai</surname><given-names>T</given-names></name><name><surname>Yamada</surname><given-names>S</given-names></name><name><surname>Tominaga</surname><given-names>T</given-names></name><name><surname>Ichikawa</surname><given-names>M</given-names></name><name><surname>Miyawaki</surname><given-names>A</given-names></name></person-group><year>2004</year><article-title>Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>101</volume><fpage>10554</fpage><lpage>10559</lpage><pub-id pub-id-type="doi">10.1073/pnas.0400417101</pub-id></element-citation></ref><ref id="bib54"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nagaya</surname><given-names>S</given-names></name><name><surname>Kawamura</surname><given-names>K</given-names></name><name><surname>Shinmyo</surname><given-names>A</given-names></name><name><surname>Kato</surname><given-names>K</given-names></name></person-group><year>2010</year><article-title>The HSP terminator of <italic>Arabidopsis thaliana</italic> increases gene expression in plant cells</article-title><source>Plant and Cell Physiology</source><volume>51</volume><fpage>328</fpage><lpage>332</lpage><pub-id pub-id-type="doi">10.1093/pcp/pcp188</pub-id></element-citation></ref><ref id="bib55"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nakashima</surname><given-names>K</given-names></name><name><surname>Fujita</surname><given-names>Y</given-names></name><name><surname>Kanamori</surname><given-names>N</given-names></name><name><surname>Katagiri</surname><given-names>T</given-names></name><name><surname>Umezawa</surname><given-names>T</given-names></name><name><surname>Kidokoro</surname><given-names>S</given-names></name><name><surname>Maruyama</surname><given-names>K</given-names></name><name><surname>Yoshida</surname><given-names>T</given-names></name><name><surname>Ishiyama</surname><given-names>K</given-names></name><name><surname>Kobayashi</surname><given-names>M</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name><name><surname>Yamaguchi-Shinozaki</surname><given-names>K</given-names></name></person-group><year>2009</year><article-title>Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy</article-title><source>Plant and Cell Physiology</source><volume>50</volume><fpage>1345</fpage><lpage>1363</lpage><pub-id pub-id-type="doi">10.1093/pcp/pcp083</pub-id></element-citation></ref><ref id="bib56"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nambara</surname><given-names>E</given-names></name><name><surname>Marion-Poll</surname><given-names>A</given-names></name></person-group><year>2005</year><article-title>Abscisic acid biosynthesis and catabolism</article-title><source>Annual Review of Plant Biology</source><volume>56</volume><fpage>165</fpage><lpage>185</lpage><pub-id pub-id-type="doi">10.1146/annurev.arplant.56.032604.144046</pub-id></element-citation></ref><ref id="bib57"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nemhauser</surname><given-names>JL</given-names></name><name><surname>Hong</surname><given-names>F</given-names></name><name><surname>Chory</surname><given-names>J</given-names></name></person-group><year>2006</year><article-title>Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses</article-title><source>Cell</source><volume>126</volume><fpage>467</fpage><lpage>475</lpage><pub-id pub-id-type="doi">10.1016/j.cell.2006.05.050</pub-id></element-citation></ref><ref id="bib58"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nishimura</surname><given-names>N</given-names></name><name><surname>Hitomi</surname><given-names>K</given-names></name><name><surname>Arvai</surname><given-names>AS</given-names></name><name><surname>Rambo</surname><given-names>RP</given-names></name><name><surname>Hitomi</surname><given-names>C</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name><name><surname>Getzoff</surname><given-names>ED</given-names></name></person-group><year>2009</year><article-title>Structural mechanism of abscisic acid binding and signaling by dimeric PYR1</article-title><source>Science</source><volume>326</volume><fpage>1373</fpage><lpage>1379</lpage><pub-id pub-id-type="doi">10.1126/science.1181829</pub-id></element-citation></ref><ref id="bib59"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nishimura</surname><given-names>N</given-names></name><name><surname>Sarkeshik</surname><given-names>A</given-names></name><name><surname>Nito</surname><given-names>K</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Wang</surname><given-names>A</given-names></name><name><surname>Carvalho</surname><given-names>PC</given-names></name><name><surname>Lee</surname><given-names>S</given-names></name><name><surname>Caddell</surname><given-names>DF</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Chory</surname><given-names>J</given-names></name><name><surname>Yates</surname><given-names>JR</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name></person-group><year>2010</year><article-title>PYR/PYL/RCAR family members are major <italic>in-vivo</italic> ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis</article-title><source>Plant Journal</source><volume>61</volume><fpage>290</fpage><lpage>299</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2009.04054.x</pub-id></element-citation></ref><ref id="bib60"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Norris</surname><given-names>SR</given-names></name><name><surname>Meyer</surname><given-names>SE</given-names></name><name><surname>Callis</surname><given-names>J</given-names></name></person-group><year>1993</year><article-title>The intron of <italic>Arabidopsis thaliana</italic> polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression</article-title><source>Plant Molecular Biology</source><volume>21</volume><fpage>895</fpage><lpage>906</lpage><pub-id pub-id-type="doi">10.1007/BF00027120</pub-id></element-citation></ref><ref id="bib61"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Okamoto</surname><given-names>M</given-names></name><name><surname>Peterson</surname><given-names>FC</given-names></name><name><surname>Defries</surname><given-names>A</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Endo</surname><given-names>A</given-names></name><name><surname>Nambara</surname><given-names>E</given-names></name><name><surname>Volkman</surname><given-names>BF</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name></person-group><year>2013</year><article-title>Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>110</volume><fpage>12132</fpage><lpage>12137</lpage><pub-id pub-id-type="doi">10.1073/pnas.1305919110</pub-id></element-citation></ref><ref id="bib62"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Okumoto</surname><given-names>S</given-names></name><name><surname>Jones</surname><given-names>A</given-names></name><name><surname>Frommer</surname><given-names>WB</given-names></name></person-group><year>2012</year><article-title>Quantitative imaging with fluorescent biosensors</article-title><source>Annual Review of Plant Biology</source><volume>63</volume><fpage>663</fpage><lpage>706</lpage><pub-id pub-id-type="doi">10.1146/annurev-arplant-042110-103745</pub-id></element-citation></ref><ref id="bib63"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Palmer</surname><given-names>AE</given-names></name><name><surname>Giacomello</surname><given-names>M</given-names></name><name><surname>Kortemme</surname><given-names>T</given-names></name><name><surname>Hires</surname><given-names>SA</given-names></name><name><surname>Lev-Ram</surname><given-names>V</given-names></name><name><surname>Baker</surname><given-names>D</given-names></name><name><surname>Tsien</surname><given-names>RY</given-names></name></person-group><year>2006</year><article-title>Ca<sup>2+</sup> indicators based on computationally redesigned calmodulin-peptide pairs</article-title><source>Chemistry & Biology</source><volume>13</volume><fpage>521</fpage><lpage>530</lpage><pub-id pub-id-type="doi">10.1016/j.chembiol.2006.03.007</pub-id></element-citation></ref><ref id="bib64"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Fung</surname><given-names>P</given-names></name><name><surname>Nishimura</surname><given-names>N</given-names></name><name><surname>Jensen</surname><given-names>DR</given-names></name><name><surname>Fujii</surname><given-names>H</given-names></name><name><surname>Zhao</surname><given-names>Y</given-names></name><name><surname>Lumba</surname><given-names>S</given-names></name><name><surname>Santiago</surname><given-names>J</given-names></name><name><surname>Rodrigues</surname><given-names>A</given-names></name><name><surname>Chow</surname><given-names>TF</given-names></name><name><surname>Alfred</surname><given-names>SE</given-names></name><name><surname>Bonetta</surname><given-names>D</given-names></name><name><surname>Finkelstein</surname><given-names>R</given-names></name><name><surname>Provart</surname><given-names>NJ</given-names></name><name><surname>Desveaux</surname><given-names>D</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name><name><surname>McCourt</surname><given-names>P</given-names></name><name><surname>Zhu</surname><given-names>JK</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name><name><surname>Volkman</surname><given-names>BF</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name></person-group><year>2009</year><article-title>Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins</article-title><source>Science</source><volume>324</volume><fpage>1068</fpage><lpage>1071</lpage><pub-id pub-id-type="doi">10.1126/science.1173041</pub-id></element-citation></ref><ref id="bib65"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Piljić</surname><given-names>A</given-names></name><name><surname>de Diego</surname><given-names>I</given-names></name><name><surname>Wilmanns</surname><given-names>M</given-names></name><name><surname>Schultz</surname><given-names>C</given-names></name></person-group><year>2011</year><article-title>Rapid development of genetically encoded FRET reporters</article-title><source>ACS Chemical Biology</source><volume>6</volume><fpage>685</fpage><lpage>691</lpage><pub-id pub-id-type="doi">10.1021/cb100402n</pub-id></element-citation></ref><ref id="bib66"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Raghavendra</surname><given-names>AS</given-names></name><name><surname>Gonugunta</surname><given-names>VK</given-names></name><name><surname>Christmann</surname><given-names>A</given-names></name><name><surname>Grill</surname><given-names>E</given-names></name></person-group><year>2010</year><article-title>ABA perception and signalling</article-title><source>Trends in Plant Science</source><volume>15</volume><fpage>395</fpage><lpage>401</lpage><pub-id pub-id-type="doi">10.1016/j.tplants.2010.04.006</pub-id></element-citation></ref><ref id="bib67"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Rekas</surname><given-names>A</given-names></name><name><surname>Alattia</surname><given-names>JR</given-names></name><name><surname>Nagai</surname><given-names>T</given-names></name><name><surname>Miyawaki</surname><given-names>A</given-names></name><name><surname>Ikura</surname><given-names>M</given-names></name></person-group><year>2002</year><article-title>Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity</article-title><source>The Journal of Biological Chemistry</source><volume>277</volume><fpage>50573</fpage><lpage>50578</lpage><pub-id pub-id-type="doi">10.1074/jbc.M209524200</pub-id></element-citation></ref><ref id="bib68"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Santiago</surname><given-names>J</given-names></name><name><surname>Dupeux</surname><given-names>F</given-names></name><name><surname>Round</surname><given-names>A</given-names></name><name><surname>Antoni</surname><given-names>R</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Jamin</surname><given-names>M</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name><name><surname>Márquez</surname><given-names>JA</given-names></name></person-group><year>2009a</year><article-title>The abscisic acid receptor PYR1 in complex with abscisic acid</article-title><source>Nature</source><volume>462</volume><fpage>665</fpage><lpage>668</lpage><pub-id pub-id-type="doi">10.1038/nature08591</pub-id></element-citation></ref><ref id="bib69"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Santiago</surname><given-names>J</given-names></name><name><surname>Rodrigues</surname><given-names>A</given-names></name><name><surname>Saez</surname><given-names>A</given-names></name><name><surname>Rubio</surname><given-names>S</given-names></name><name><surname>Antoni</surname><given-names>R</given-names></name><name><surname>Dupeux</surname><given-names>F</given-names></name><name><surname>Park</surname><given-names>SY</given-names></name><name><surname>Márquez</surname><given-names>JA</given-names></name><name><surname>Cutler</surname><given-names>SR</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name></person-group><year>2009b</year><article-title>Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs</article-title><source>Plant Journal</source><volume>60</volume><fpage>575</fpage><lpage>588</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2009.03981.x</pub-id></element-citation></ref><ref id="bib70"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sato</surname><given-names>A</given-names></name><name><surname>Sato</surname><given-names>Y</given-names></name><name><surname>Fukao</surname><given-names>Y</given-names></name><name><surname>Fujiwara</surname><given-names>M</given-names></name><name><surname>Umezawa</surname><given-names>T</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name><name><surname>Hibi</surname><given-names>T</given-names></name><name><surname>Taniguchi</surname><given-names>M</given-names></name><name><surname>Miyake</surname><given-names>H</given-names></name><name><surname>Goto</surname><given-names>DB</given-names></name><name><surname>Uozumi</surname><given-names>N</given-names></name></person-group><year>2009</year><article-title>Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase</article-title><source>Biochemical Journal</source><volume>424</volume><fpage>439</fpage><lpage>448</lpage><pub-id pub-id-type="doi">10.1042/BJ20091221</pub-id></element-citation></ref><ref id="bib71"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sauter</surname><given-names>A</given-names></name><name><surname>Davies</surname><given-names>W</given-names></name><name><surname>Hartung</surname><given-names>W</given-names></name></person-group><year>2001</year><article-title>The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot</article-title><source>Journal of Experimental Botany</source><volume>52</volume><fpage>1991</fpage><lpage>1997</lpage></element-citation></ref><ref id="bib72"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Schindelin</surname><given-names>J</given-names></name><name><surname>Arganda-Carreras</surname><given-names>I</given-names></name><name><surname>Frise</surname><given-names>E</given-names></name><name><surname>Kaynig</surname><given-names>V</given-names></name><name><surname>Longair</surname><given-names>M</given-names></name><name><surname>Pietzsch</surname><given-names>T</given-names></name><name><surname>Preibisch</surname><given-names>S</given-names></name><name><surname>Rueden</surname><given-names>C</given-names></name><name><surname>Saalfeld</surname><given-names>S</given-names></name><name><surname>Schmid</surname><given-names>B</given-names></name><name><surname>Tinevez</surname><given-names>JY</given-names></name><name><surname>White</surname><given-names>DJ</given-names></name><name><surname>Hartenstein</surname><given-names>V</given-names></name><name><surname>Eliceiri</surname><given-names>K</given-names></name><name><surname>Tomancak</surname><given-names>P</given-names></name><name><surname>Cardona</surname><given-names>A</given-names></name></person-group><year>2012</year><article-title>Fiji: an open-source platform for biological-image analysis</article-title><source>Nature Methods</source><volume>9</volume><fpage>676</fpage><lpage>682</lpage><pub-id pub-id-type="doi">10.1038/nmeth.2019</pub-id></element-citation></ref><ref id="bib73"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Seo</surname><given-names>M</given-names></name><name><surname>Koshiba</surname><given-names>T</given-names></name></person-group><year>2011</year><article-title>Transport of ABA from the site of biosynthesis to the site of action</article-title><source>Journal of Plant Research</source><volume>124</volume><fpage>501</fpage><lpage>507</lpage><pub-id pub-id-type="doi">10.1007/s10265-011-0411-4</pub-id></element-citation></ref><ref id="bib74"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sirichandra</surname><given-names>C</given-names></name><name><surname>Gu</surname><given-names>D</given-names></name><name><surname>Hu</surname><given-names>HC</given-names></name><name><surname>Davanture</surname><given-names>M</given-names></name><name><surname>Lee</surname><given-names>S</given-names></name><name><surname>Djaoui</surname><given-names>M</given-names></name><name><surname>Valot</surname><given-names>B</given-names></name><name><surname>Zivy</surname><given-names>M</given-names></name><name><surname>Leung</surname><given-names>J</given-names></name><name><surname>Merlot</surname><given-names>S</given-names></name><name><surname>Kwak</surname><given-names>JM</given-names></name></person-group><year>2009</year><article-title>Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase</article-title><source>FEBS Letters</source><volume>583</volume><fpage>2982</fpage><lpage>2986</lpage><pub-id pub-id-type="doi">10.1016/j.febslet.2009.08.033</pub-id></element-citation></ref><ref id="bib75"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sirichandra</surname><given-names>C</given-names></name><name><surname>Davanture</surname><given-names>M</given-names></name><name><surname>Turk</surname><given-names>BE</given-names></name><name><surname>Zivy</surname><given-names>M</given-names></name><name><surname>Valot</surname><given-names>B</given-names></name><name><surname>Leung</surname><given-names>J</given-names></name><name><surname>Merlot</surname><given-names>S</given-names></name></person-group><year>2010</year><article-title>The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover</article-title><source>PLOS ONE</source><volume>5</volume><fpage>e13935</fpage><pub-id pub-id-type="doi">10.1371/journal.pone.0013935</pub-id></element-citation></ref><ref id="bib76"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Tanaka</surname><given-names>Y</given-names></name><name><surname>Nose</surname><given-names>T</given-names></name><name><surname>Jikumaru</surname><given-names>Y</given-names></name><name><surname>Kamiya</surname><given-names>Y</given-names></name></person-group><year>2013</year><article-title>ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves</article-title><source>Plant Journal</source><volume>74</volume><fpage>448</fpage><lpage>457</lpage><pub-id pub-id-type="doi">10.1111/tpj.12136</pub-id></element-citation></ref><ref id="bib77"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ulmasov</surname><given-names>T</given-names></name><name><surname>Murfett</surname><given-names>J</given-names></name><name><surname>Hagen</surname><given-names>G</given-names></name><name><surname>Guilfoyle</surname><given-names>TJ</given-names></name></person-group><year>1997</year><article-title>Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements</article-title><source>Plant Cell</source><volume>9</volume><fpage>1963</fpage><lpage>1971</lpage><pub-id pub-id-type="doi">10.1105/tpc.9.11.1963</pub-id></element-citation></ref><ref id="bib78"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Umezawa</surname><given-names>T</given-names></name><name><surname>Sugiyama</surname><given-names>N</given-names></name><name><surname>Mizoguchi</surname><given-names>M</given-names></name><name><surname>Hayashi</surname><given-names>S</given-names></name><name><surname>Myouga</surname><given-names>F</given-names></name><name><surname>Yamaguchi-Shinozaki</surname><given-names>K</given-names></name><name><surname>Ishihama</surname><given-names>Y</given-names></name><name><surname>Hirayama</surname><given-names>T</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name></person-group><year>2009</year><article-title>Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis</article-title><source>Proceedings of the National Academy of Sciences of the United States of America</source><volume>106</volume><fpage>17588</fpage><lpage>17593</lpage><pub-id pub-id-type="doi">10.1073/pnas.0907095106</pub-id></element-citation></ref><ref id="bib79"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Vanneste</surname><given-names>S</given-names></name><name><surname>Friml</surname><given-names>J</given-names></name></person-group><year>2009</year><article-title>Auxin: a trigger for change in plant development</article-title><source>Cell</source><volume>136</volume><fpage>1005</fpage><lpage>1016</lpage><pub-id pub-id-type="doi">10.1016/j.cell.2009.03.001</pub-id></element-citation></ref><ref id="bib80"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Vlad</surname><given-names>F</given-names></name><name><surname>Rubio</surname><given-names>S</given-names></name><name><surname>Rodrigues</surname><given-names>A</given-names></name><name><surname>Sirichandra</surname><given-names>C</given-names></name><name><surname>Belin</surname><given-names>C</given-names></name><name><surname>Robert</surname><given-names>N</given-names></name><name><surname>Leung</surname><given-names>J</given-names></name><name><surname>Rodriguez</surname><given-names>PL</given-names></name><name><surname>Laurière</surname><given-names>C</given-names></name><name><surname>Merlot</surname><given-names>S</given-names></name></person-group><year>2009</year><article-title>Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis</article-title><source>Plant Cell</source><volume>21</volume><fpage>3170</fpage><lpage>3184</lpage><pub-id pub-id-type="doi">10.1105/tpc.109.069179</pub-id></element-citation></ref><ref id="bib81"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Waadt</surname><given-names>R</given-names></name><name><surname>Schmidt</surname><given-names>LK</given-names></name><name><surname>Lohse</surname><given-names>M</given-names></name><name><surname>Hashimoto</surname><given-names>K</given-names></name><name><surname>Bock</surname><given-names>R</given-names></name><name><surname>Kudla</surname><given-names>J</given-names></name></person-group><year>2008</year><article-title>Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta</article-title><source>Plant Journal</source><volume>56</volume><fpage>505</fpage><lpage>516</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2008.03612.x</pub-id></element-citation></ref><ref id="bib82"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Waadt</surname><given-names>R</given-names></name><name><surname>Schlücking</surname><given-names>K</given-names></name><name><surname>Schroeder</surname><given-names>JI</given-names></name><name><surname>Kudla</surname><given-names>J</given-names></name></person-group><year>2014</year><article-title>Protein fragment bimolecular fluorescence complementation analyses for the <italic>in vivo</italic> study of protein-protein interactions and cellular protein complex localizations</article-title><source>Methods in Molecular Biology</source><volume>1062</volume><fpage>629</fpage><lpage>658</lpage><pub-id pub-id-type="doi">10.1007/978-1-62703-580-4_33</pub-id></element-citation></ref><ref id="bib83"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Walter</surname><given-names>M</given-names></name><name><surname>Chaban</surname><given-names>C</given-names></name><name><surname>Schütze</surname><given-names>K</given-names></name><name><surname>Batistic</surname><given-names>O</given-names></name><name><surname>Weckermann</surname><given-names>K</given-names></name><name><surname>Näke</surname><given-names>C</given-names></name><name><surname>Blazevic</surname><given-names>D</given-names></name><name><surname>Grefen</surname><given-names>C</given-names></name><name><surname>Schumacher</surname><given-names>K</given-names></name><name><surname>Oecking</surname><given-names>C</given-names></name><name><surname>Harter</surname><given-names>K</given-names></name><name><surname>Kudla</surname><given-names>J</given-names></name></person-group><year>2004</year><article-title>Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation</article-title><source>Plant Journal</source><volume>40</volume><fpage>428</fpage><lpage>438</lpage><pub-id pub-id-type="doi">10.1111/j.1365-313X.2004.02219.x</pub-id></element-citation></ref><ref id="bib84"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Wend</surname><given-names>S</given-names></name><name><surname>Dal Bosco</surname><given-names>C</given-names></name><name><surname>Kämpf</surname><given-names>MM</given-names></name><name><surname>Ren</surname><given-names>F</given-names></name><name><surname>Palme</surname><given-names>K</given-names></name><name><surname>Weber</surname><given-names>W</given-names></name><name><surname>Dovzhenko</surname><given-names>A</given-names></name><name><surname>Zurbriggen</surname><given-names>MD</given-names></name></person-group><year>2013</year><article-title>A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics</article-title><source>Scientific Reports</source><volume>3</volume><fpage>2052</fpage><pub-id pub-id-type="doi">10.1038/srep02052</pub-id></element-citation></ref><ref id="bib85"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Wilkinson</surname><given-names>S</given-names></name><name><surname>Davies</surname><given-names>WJ</given-names></name></person-group><year>2002</year><article-title>ABA-based chemical signalling: the co-ordination of responses to stress in plants</article-title><source>Plant Cell and Environment</source><volume>25</volume><fpage>195</fpage><lpage>210</lpage><pub-id pub-id-type="doi">10.1046/j.0016-8025.2001.00824.x</pub-id></element-citation></ref><ref id="bib86"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Yamaguchi-Shinozaki</surname><given-names>K</given-names></name><name><surname>Shinozaki</surname><given-names>K</given-names></name></person-group><year>1993</year><article-title>Characterization of the expression of a desiccation-responsive rd29 gene of <italic>Arabidopsis thaliana</italic> and analysis of its promoter in transgenic plants</article-title><source>Molecular & General Genetics</source><volume>236</volume><fpage>331</fpage><lpage>340</lpage><pub-id pub-id-type="doi">10.1007/BF00277130</pub-id></element-citation></ref><ref id="bib87"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Yin</surname><given-names>P</given-names></name><name><surname>Fan</surname><given-names>H</given-names></name><name><surname>Hao</surname><given-names>Q</given-names></name><name><surname>Yuan</surname><given-names>X</given-names></name><name><surname>Wu</surname><given-names>D</given-names></name><name><surname>Pang</surname><given-names>Y</given-names></name><name><surname>Yan</surname><given-names>C</given-names></name><name><surname>Li</surname><given-names>W</given-names></name><name><surname>Wang</surname><given-names>J</given-names></name><name><surname>Yan</surname><given-names>N</given-names></name></person-group><year>2009</year><article-title>Structural insights into the mechanism of abscisic acid signaling by PYL proteins</article-title><source>Nature Structural & Molecular Biology</source><volume>16</volume><fpage>1230</fpage><lpage>1236</lpage><pub-id pub-id-type="doi">10.1038/nsmb.1730</pub-id></element-citation></ref><ref id="bib89"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Zhang</surname><given-names>X</given-names></name><name><surname>Zhang</surname><given-names>Q</given-names></name><name><surname>Xin</surname><given-names>Q</given-names></name><name><surname>Yu</surname><given-names>L</given-names></name><name><surname>Wang</surname><given-names>Z</given-names></name><name><surname>Wu</surname><given-names>W</given-names></name><name><surname>Jiang</surname><given-names>L</given-names></name><name><surname>Wang</surname><given-names>G</given-names></name><name><surname>Tian</surname><given-names>W</given-names></name><name><surname>Deng</surname><given-names>Z</given-names></name><name><surname>Wang</surname><given-names>Y</given-names></name><name><surname>Liu</surname><given-names>Z</given-names></name><name><surname>Long</surname><given-names>J</given-names></name><name><surname>Gong</surname><given-names>Z</given-names></name><name><surname>Chen</surname><given-names>Z</given-names></name></person-group><year>2012</year><article-title>Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism</article-title><source>Structure</source><volume>20</volume><fpage>780</fpage><lpage>790</lpage><pub-id pub-id-type="doi">10.1016/j.str.2012.02.019</pub-id></element-citation></ref><ref id="bib88"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Zhang</surname><given-names>X</given-names></name><name><surname>Jiang</surname><given-names>L</given-names></name><name><surname>Wang</surname><given-names>G</given-names></name><name><surname>Yu</surname><given-names>L</given-names></name><name><surname>Zhang</surname><given-names>Q</given-names></name><name><surname>Xin</surname><given-names>Q</given-names></name><name><surname>Wu</surname><given-names>W</given-names></name><name><surname>Gong</surname><given-names>Z</given-names></name><name><surname>Chen</surname><given-names>Z</given-names></name></person-group><year>2013</year><article-title>Structural insights into the abscisic acid stereospecificity by the ABA receptors PYR/PYL/RCAR</article-title><source>PLOS ONE</source><volume>8</volume><fpage>e67477</fpage><pub-id pub-id-type="doi">10.1371/journal.pone.0067477</pub-id></element-citation></ref></ref-list></back><sub-article article-type="article-commentary" id="SA1"><front-stub><article-id pub-id-type="doi">10.7554/eLife.01739.022</article-id><title-group><article-title>Decision letter</article-title></title-group><contrib-group content-type="section"><contrib contrib-type="editor"><name><surname>Amasino</surname><given-names>Richard</given-names></name><role>Reviewing editor</role><aff><institution>University of Wisconsin</institution>, <country>United States</country></aff></contrib></contrib-group></front-stub><body><boxed-text><p>eLife posts the editorial decision letter and author response on a selection of the published articles (subject to the approval of the authors). An edited version of the letter sent to the authors after peer review is shown, indicating the substantive concerns or comments; minor concerns are not usually shown. Reviewers have the opportunity to discuss the decision before the letter is sent (see <ext-link ext-link-type="uri" xlink:href="http://elifesciences.org/review-process">review process</ext-link>). Similarly, the author response typically shows only responses to the major concerns raised by the reviewers.</p></boxed-text><p>Thank you for sending your work entitled “Genetically encoded reporters for the direct visualization of abscisic acid distribution and transport in Arabidopsis” for consideration at <italic>eLife</italic>. Your article has been favorably evaluated by a Senior editor, Detlef Weigel, and 3 reviewers, one of whom, Richard Amasino, is a member of our Board of Reviewing Editors.</p><p>Your paper represents an important technical advance and we will consider publication if you can address the following issues. Two of the issues require further experimentation.</p><p>1) Determine whether transgenic lines expressing the sensors are able to report endogenous changes in ABA concentration. This experiment is not overly burdensome as the transgenic lines are already in place and as a reviewer notes “mannitol treatment of seedlings would trigger endogenous ABA synthesis and could be used a fast/simple experiment to prove that the sensors are useful for measuring changes in endogenous ABA content.”</p><p>2) Determine whether transgenic lines expressing the sensors exhibit altered sensitivity to exogenous ABA. Because the sensors bind to ABA and possibly to other endogenous proteins required for ABA signal transduction, there is the issue of whether or not plants expressing the sensors exhibit altered ABA sensitivity. Again, this experiment is not overly burdensome; for example, straightforward growth inhibition assays could be used. As a reviewer notes “I don't think that the lines need to have 100 % wild type ABA sensitivity to be useful. It would be ideal if this is the case, but the key point is to know their inherent properties and limitations and the caveats that come along with using them.”</p><p>Other issues:</p><p>3) The authors show a very clear pH sensitivity titration curve showing the pH independence of the sensor above pH 7.0. Some discussion of expected pH changes in response to ABA would be useful to place this pH dependency in context for the usefulness of the sensor.</p><p>4) In <xref ref-type="fig" rid="fig3">Figure 3A</xref> it looks like both the FRET acceptor and donor signal increase after addition of ABA in the guard cell. You would expect the donor signal to rise and acceptor to fall as ABA levels increase. Does this mean there is significant synthesis of the sensor over the time period of the experiment?</p><p>5) There are quite a few papers that have attempted to estimate ABA levels in single cell types, for example, a manuscript from the Weiler lab made estimates for guard cells after stress (<xref ref-type="bibr" rid="bib27">Harris et al. 1988</xref>). I think the older literature on this topic should be cited and discussed in the Introduction and Discussion.</p></body></sub-article><sub-article article-type="reply" id="SA2"><front-stub><article-id pub-id-type="doi">10.7554/eLife.01739.023</article-id><title-group><article-title>Author response</article-title></title-group></front-stub><body><p><italic>1) Determine whether transgenic lines expressing the sensors are able to report endogenous changes in ABA concentration. This experiment is not overly burdensome as the transgenic lines are already in place and as a reviewer notes “mannitol treatment of seedlings would trigger endogenous ABA synthesis and could be used a fast/simple experiment to prove that the sensors are useful for measuring changes in endogenous ABA</italic> <italic>content.”</italic></p><p>Based on recent studies, ABA concentrations increase in roots and shoots several hours after stress treatments (<xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>). Older studies, using manually dissected guard cells, measured ABA concentration increases in guard cells 15 min after passive dehydration of leaves (<xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>). ABAleon2.1 detected endogenous ABA concentration increases in guard cells 15 min after a drop in humidity (<xref ref-type="fig" rid="fig4 fig9">Figure 9A,B</xref>) and 4 h after 100 mM NaCl treatment (<xref ref-type="fig" rid="fig9">Figure 9C,D</xref>). Interestingly, 4 h of 300 mM sorbitol treatment did not induce ABA increases in guard cells (<xref ref-type="fig" rid="fig9">Figure 9C,D</xref>). When five day-old seedlings were treated for 6 h, both NaCl and sorbitol induced ABA concentration increases in roots (<xref ref-type="fig" rid="fig9">Figure 9E-H</xref>). These experiments are now described and discussed in the manuscript (Abstract; Results; third paragraph of the Discussion section entitled “Analyses of ABA concentration changes and long-distance ABA transport in Arabidopsis”).</p><p><italic>2) Determine whether transgenic lines expressing the sensors exhibit altered sensitivity to exogenous ABA. Because the sensors bind to ABA and possibly to other endogenous proteins required for ABA signal transduction, there is the issue of whether or not plants expressing the sensors exhibit altered ABA sensitivity. Again, this experiment is not overly burdensome; for example, straightforward growth inhibition assays could be used. As a reviewer notes “I don't think that the lines need to have 100 % wild type ABA sensitivity to be useful. It would be ideal if this is the case, but the key point is to know their inherent properties and limitations and the caveats that come along with</italic> <italic>using them.”</italic></p><p>We thank the reviewers for suggesting these experiments. Phenotypical analyses have been performed with two ABAleon2.1 lines (line 3 and line 10) that express ABAleon2.1 at different levels (<xref ref-type="fig" rid="fig5">Figure 5A</xref>). These lines were compared to Col-0 wild type, YFP-PYR1 and <italic>abi1-3</italic>/YFP-ABI1 (<xref ref-type="bibr" rid="bib59">Nishimura et al., 2010</xref>) over-expression lines in ABA sensitivity assays (<xref ref-type="fig" rid="fig5">Figure 5</xref>). In ABA-induced stomatal closure assays both ABAleon2.1 lines exhibited responses to ABA, which were comparable to Col-0 wild type plants (<xref ref-type="fig" rid="fig5">Figure 5J</xref>). However, both ABAleon2.1 lines exhibited a reduced ABA sensitivity in seed germination, cotyledon expansion and seedling growth assays (<xref ref-type="fig" rid="fig5">Figure 5B-I</xref>). Interestingly, the degree of ABA sensitivity in both lines correlated with ABAleon2.1 expression levels, which were determined by quantitative fluorescence microscopy (<xref ref-type="fig" rid="fig5">Figure 5A</xref>). Compared to <italic>abi1-3</italic>/YFP-ABI1, the ABA sensitivity of the ABAleon2.1 plants was similar in seedling growth assays (<xref ref-type="fig" rid="fig5">Figure 5D,E,I</xref>), but less affected in seed germination and cotyledon expansion assays (<xref ref-type="fig" rid="fig5">Figure 5B</xref>,C,F-H). The higher fluorescence intensity of both ABAleon2.1 lines compared to <italic>abi1-3</italic>/YFP-ABI1 indicates that ABAleon2.1 is much more highly expressed than YFP-ABI1. On the basis that ABAleon2.1 does not exhibit phosphatase activity <italic>in vitro</italic> (<xref ref-type="fig" rid="fig1">Figure 1H</xref>) and that the degree of ABA sensitivity correlated with ABAleon2.1 expression levels, the reduced ABA sensitivity of ABAleon2.1 plants (<xref ref-type="fig" rid="fig5">Figure 5</xref>) might result from ABAleon2.1 mediated scavenging of physiologically relevant ABA concentrations in certain tissues. We believe that any method has its limitations and that it is helpful to analyze these, as now, in this study. The relevance, limitation and possible mechanism of reduced ABA sensitivity of ABAleon2.1 are now described and discussed in the manuscript (Abstract; Results section entitled “Arabidopsis plants expressing ABAleon2.1 are ABA hyposensitive; final paragraph of Discussion section entitled “Design of ABAleon reporters”).</p><p>Although we have not exchanged manuscripts with the Frommer laboratory, brief communications inform us that their reporters are designed differently, have a different dynamic range, and a complementary ABA concentration detection range. Based on these differences, the two classes of ABA reporters developed and analyzed by our respective laboratories could be utilized for different aspects of ABA biology and could be complementary.</p><p><italic>Other</italic> <italic>issues:</italic></p><p><italic>3) The authors show a very clear pH sensitivity titration curve showing the pH independence of the sensor above pH 7.0. Some discussion of expected pH changes in response to ABA would be useful to place this pH dependency in context for the usefulness of the sensor</italic>.</p><p>ABA is known to induce cytoplasmic alkalinization of guard cells. We now discuss previous literature showing this and discuss ABAleon stability in this pH range, as suggested (fifth paragraph of the Discussion section entitled “Analyses of ABA concentration changes and long-distance ABA transport in Arabidopsis).</p><p><italic>4) In</italic> <xref ref-type="fig" rid="fig3"><italic>Figure 3A</italic></xref> <italic>it looks like both the FRET acceptor and donor signal increase after addition of ABA in the guard cell. You would expect the donor signal to rise and acceptor to fall as ABA levels increase. Does this mean there is significant synthesis of the sensor over the time period of the</italic> <italic>experiment?</italic></p><p>Examination of the imaging data showed, that the increase of acceptor emission in the guard cell analyses in <xref ref-type="fig" rid="fig3">Figure 3A-C</xref> was caused by a slight sample drift. Although it is known that ABA induces expression of certain PP2Cs and represses expression of certain PYR/PYL/RCARs (Leonhardt et al., 2004; Santiago et al., 2009; Szostkiewicz et al., 2010), an ABA dependent expression of ABAleon2.1 is rather unlikely. ABAleon2.1 was expressed under the control of the pUBQ10 promoter, which is ABA independent (<ext-link ext-link-type="uri" xlink:href="http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi">http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi</ext-link>; Winter et al., 2007). It is not expected, that significant changes in ABAleon2.1 protein levels occur within the time period of the experiments in <xref ref-type="fig" rid="fig3">Figure 3</xref>. In the case of <italic>de novo</italic> protein synthesis, newly synthesized ABAleon2.1 proteins would not affect the ratiometric measurements in the timeframe of the experiments in <xref ref-type="fig" rid="fig3">Figure 3</xref>, because the maturation time of mTurquoise is > 1 h (<xref ref-type="bibr" rid="bib24">Goedhart et al., 2010</xref>). We have added text to the figure caption noting that a slight sample drift contributed to fluorescence signals in <xref ref-type="fig" rid="fig3">Figure 3A</xref>.</p><p><italic>5) There are quite a few papers that have attempted to estimate ABA levels in single cell types, for example, a manuscript from the Weiler lab made estimates for guard cells after stress (</italic><xref ref-type="bibr" rid="bib27"><italic>Harris et al. 1988</italic></xref><italic>). I think the older literature on this topic should be cited and discussed in the Introduction and Discussion</italic>.</p><p>Thank you for this comment. This section has been included in the Introduction: “In response to water limitations ABA concentrations increase (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>; <xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>; <xref ref-type="bibr" rid="bib11">Christmann et al., 2007</xref>; <xref ref-type="bibr" rid="bib18">Forcat et al., 2008</xref>; <xref ref-type="bibr" rid="bib31">Ikegami et al., 2009</xref>; <xref ref-type="bibr" rid="bib22">Geng et al., 2013</xref>) and decrease upon stress relief (<xref ref-type="bibr" rid="bib28">Harris and Outlaw, 1991</xref>; <xref ref-type="bibr" rid="bib17">Endo et al., 2008</xref>).”</p><p>This section has been included in the Discussion: “In <italic>Vicia faba</italic> guard cells ABA concentrations were ∼ 0.7 fg/cell pair in unstressed and ∼ 17.7 fg/cell pair in stressed guard cells (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>). ABA concentrations in stressed guard cells were estimated to be in the range of ∼15 µM (<xref ref-type="bibr" rid="bib27">Harris et al., 1988</xref>; <xref ref-type="bibr" rid="bib28">Harris and Outlaw 1991</xref>). Extrapolating from these values, unstressed guard cell ABA concentration would be ∼ 500 nM. Such approximations would be consistent with the partial saturation and reduced response of ABAleon2.1 in guard cells (<xref ref-type="fig" rid="fig3">Figure 3A-C</xref>) and with strong expression of the ABA-induced reporter pRAB18-GFP (<xref ref-type="fig" rid="fig2s1">Figure 2–figure supplement 1</xref>).”</p><p>In addition to the requested points, we have included a new Figure (<xref ref-type="fig" rid="fig8">Figure 8</xref>), in which ABA-induced responses of low-affinity ABAleons (ABAleon2.13, ABAleon2.14 and ABAleon2.15) were investigated in the root maturation zone of transgenic Arabidopsis plants. These analyses demonstrate the utility of ABAleon2.15 (K’<sub>d</sub> ∼ 600 nM), which could complement the high affinity ABAleon2.1 (K’<sub>d</sub> ∼ 100 nM) (Results section entitled “Low affinity ABAleon2.15 reports ABA uptake in roots”).</p></body></sub-article></article>