-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path53.py
45 lines (37 loc) · 1.19 KB
/
53.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
'''
53. Maximum Subarray
https://leetcode.com/problems/maximum-subarray/
Given an integer array nums,
find the contiguous subarray (containing at least one number)
which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution,
try coding another solution using the divide and conquer approach,
which is more subtle.
'''
from typing import *
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
# check not empty
# avoid array index out of range for nums[0]
if not nums:
return 0
maxSubSum = nums[0]
subSum = nums[0]
for i in range(1, len(nums)):
subSum = max(subSum+nums[i], nums[i])
maxSubSum = max(maxSubSum, subSum)
return maxSubSum
class DPSolution:
def maxSubArray(self, nums: List[int]) -> int:
dp = [0] * len(nums)
dp[0] = nums[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i-1]+nums[i], nums[i])
return max(dp)
print(Solution().maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))
# 6