-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWakeWord.py
251 lines (204 loc) · 8.92 KB
/
WakeWord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import pyaudio
import numpy as np
from collections import deque
import soundfile as sf
import tensorflow as tf
import time
from internal_methods import spectrogramFromAudioData
import pygame
import os
from typing import Any
import speech_recognition as sr
response_mapping = {
"wake_response_audio": "kocho_sounds/moshi_moshi.wav",
"wake_response_message": "Moshi moshi",
"greeting_message": "Konnichiwa",
"greeting_audio": "kocho_sounds/konnichiwa.wav",
"goodbye_audio": "kocho_sounds/sayonara.wav",
"goodbye_message": "Sayonaraa...",
}
class AudioProcessor:
def __init__(
self,
sample_shape: tuple | None = None,
model_path: str = "model.keras",
response_mapping: dict = {},
use_model_warm_up=True,
batch_size=32,
rate=44100,
channels=1,
format=pyaudio.paFloat32,
duration=2,
save_dir="wake_record",
verbose: int | bool = 1,
):
# Audio related variables
self.RATE: int = rate
self.CHANNELS: int = channels
self.FORMAT = format
self.SAMPLE_WIDTH = pyaudio.PyAudio().get_sample_size(format)
self.DURATION: int = duration
self.CHUNK: int = self.RATE # 1 second chunks
self.audio_buffer = deque(maxlen=self.DURATION)
# Add a single chunk to the buffer, so that from the beginning of recording there will be already 2 chunks
self.buffer_placeholder: np.ndarray = np.zeros(shape=(self.RATE,))
self.audio_buffer.append(self.buffer_placeholder)
# Saving related variables
self.save_dir: str = save_dir
os.makedirs(self.save_dir, exist_ok=True)
self._saving_counter: int = len(os.listdir(self.save_dir))
self.verbose = verbose
# Model related variables
self.sample_shape = sample_shape
if self.sample_shape is None:
self.sample_shape = self._define_sample_shape()
self.batch_size: int = batch_size
self.batch_placeholder: np.ndarray = np.zeros(
shape=(self.batch_size - 1,) + self.sample_shape
) # Batch placeholder, So if the model is trained on batch of 32, it creates a shape of 31 samples and during prediction adds a single sample to the batch,
# thus mathing the batch size
self.model_path: str = model_path
self.model = self.load_model()
# Play beep sound everytime the model recognized a wake word
self.mixer = pygame.mixer
self.mixer.init()
self.mixer.set_num_channels(1)
self.wake_response_channel = self.mixer.Channel(0)
self.response_mapping = response_mapping
self._load_responses()
self.recognizer = sr.Recognizer()
if use_model_warm_up:
self.warm_up_model()
def _load_responses(self):
### Wake Response
self.wake_response_audio: str = self.response_mapping.get(
"wake_response_audio", None
)
self.wake_response_message: str = self.response_mapping.get(
"wake_response_message", None
)
self.wake_response_sound = self._get_sound_obj(self.wake_response_audio)
### Greetings
self.greeting_audio: str = self.response_mapping.get("greeting_audio", None)
self.greeting_message: str = self.response_mapping.get("greeting_message", None)
self.greeting_sound = self._get_sound_obj(self.greeting_audio)
### Goodbye
self.goodbye_audio: str = self.response_mapping.get("goodbye_audio", None)
self.goodbye_message: str = self.response_mapping.get("goodbye_message", None)
self.goodbye_sound = self._get_sound_obj(self.goodbye_audio)
def _get_sound_obj(self, audio_name):
return self.mixer.Sound(audio_name) if audio_name is not None else None
def send_voice(self, sound, message=None):
if sound is None:
return
self.wake_response_channel.play(sound) # Play the beep sound on the channel
isFinished = False
while self.wake_response_channel.get_busy():
if not isFinished and message is not None:
print(self.send_message(message))
isFinished = True
def send_message(self, message):
if message is not None:
return message
def load_model(self):
return tf.keras.models.load_model(self.model_path)
def log(self, *args, **kwargs):
if self.verbose:
print(*args, **kwargs)
def warm_up_model(self, warm_up_cycles: int = 5):
self.log("Warming up the model...")
dummy_input = np.zeros(
shape=(self.batch_size,) + self.sample_shape
) # Replace with appropriate shape
for _ in range(warm_up_cycles):
self.model.predict(dummy_input, verbose=0)
self.log("Model warm-up completed.")
def _define_sample_shape(self):
buffer_shape = self.DURATION * self.RATE
dummy_sequence = np.ones(shape=buffer_shape)
spectrogram_sample = self._spectrogram_from_audio_data(dummy_sequence)
sample_shape = spectrogram_sample.shape
self.log(f"Sample shape defined: {sample_shape}")
return sample_shape
def _save_segments_to_wav(self, segments):
combined_segments = np.concatenate(segments)
filename = f"output_{self._saving_counter}.wav"
save_path = os.path.join(self.save_dir, filename)
sf.write(save_path, combined_segments, self.RATE, "FLOAT")
self.log(f"Saved combined segments to {filename}")
self._saving_counter += 1
def _spectrogram_from_audio_data(self, sequence):
return spectrogramFromAudioData(audio_data=sequence)
def _predict(self, segments):
sequence = np.concatenate(segments)
spectrogram = self._spectrogram_from_audio_data(sequence)
data_batch = np.vstack((self.batch_placeholder, spectrogram[np.newaxis, :, :]))
prediction = self.model.predict(data_batch, verbose=0)
prediction = prediction[-1][0]
prediction = np.round(prediction, 2)
return prediction
def callback(self, in_data, frame_count, time_info, status):
start_time = time.perf_counter()
audio_segment = np.frombuffer(in_data, dtype=np.float32)
self.audio_buffer.append(audio_segment)
prediction = self._predict(self.audio_buffer)
ellapsed_time = time.perf_counter() - start_time
self.log(f"Time Ellapsed: {ellapsed_time:.2f}\n")
if ellapsed_time > self.DURATION:
self.log(
f"WARNING: callback function took {ellapsed_time:.2f} seconds, which is longer than the chunk duration of 1 second.\n"
)
if prediction > 0.8:
self.send_voice(
sound=self.wake_response_sound, message=self.wake_response_message
)
self._save_segments_to_wav(
self.audio_buffer
) # Uncomment if you want to save recognized wake word segments
self.recognize_speech()
else:
self.log(f"LISTENING... | Prediction: {prediction}")
return (in_data, pyaudio.paContinue)
# Initialize the recognizer
# Function to recognize speech
def recognize_speech(self):
with sr.Microphone() as source:
print("Listening...")
# recognizer.adjust_for_ambient_noise(source) # Adjust for ambient noise
audio = self.recognizer.listen(source)
try:
# Recognize speech using Google Speech Recognition
text = self.recognizer.recognize_google(audio)
print("You said:", text)
except sr.UnknownValueError:
print("Sorry, could not understand audio.")
except sr.RequestError as e:
print("Error fetching results; {0}".format(e))
def start_stream(self):
p = pyaudio.PyAudio()
stream = p.open(
format=self.FORMAT,
channels=self.CHANNELS,
rate=self.RATE,
input=True,
frames_per_buffer=self.CHUNK,
stream_callback=self.callback,
)
self.log("Recording...")
stream.start_stream()
self.send_voice(sound=self.greeting_sound, message=self.greeting_message)
try:
while stream.is_active():
time.sleep(1)
except KeyboardInterrupt:
self.send_voice(self.goodbye_sound, message=self.goodbye_message)
self.log("Interrupted by user")
stream.stop_stream()
stream.close()
p.terminate()
self.log("Recording stopped.")
if __name__ == "__main__":
audio_processor = AudioProcessor(
model_path="WAKE_WORD_ENHANCED.keras", response_mapping=response_mapping
)
audio_processor.start_stream()