-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
198 lines (138 loc) · 5.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from matplotlib import pyplot as plt
import datetime
import json
# Customization
with open("zabbix_conf.json", 'r') as conf_file:
conf_file = json.load(conf_file)
training_conf = conf_file['Model Training']
# Set the path to the main directory containing the training and testing folders
main_dir =training_conf['main_dir']
# Define the subdirectories
train_dir =training_conf['train_dir']
test_dir =training_conf['test_dir']
logs_dir =training_conf['logs_dir']
# Set the desired image settings
image_width =training_conf['image_width']
image_height =training_conf['image_height']
image_size = (image_width, image_height)
resize_factor =training_conf['resize_factor']
batch_size =training_conf['batch_size']
# Specify the exact names of the two classes (two directories) located in both subdirectories
class_names =training_conf['class_names']
epochs = training_conf['epochs']
print('_________________________________________________________')
print(f'Main directory is set to {main_dir}')
print(f'Training subdirectory is set to {train_dir}')
print(f'Testing subdirectory is set to {test_dir}')
print('_________________________________________________________')
print(f'Image width: {image_width}')
print(f'Image height: {image_height}')
print(f'Image will be resized to {resize_factor*100}% of its original size')
print('_________________________________________________________')
print(f'Batch size: {batch_size}')
print(f'Number of training cycles (epochs): {epochs}')
print('_________________________________________________________')
# Create the training dataset
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
directory=train_dir,
labels='inferred',
label_mode='binary',
color_mode='rgb',
class_names=class_names,
batch_size=batch_size,
image_size=image_size,
shuffle=True
)
# Create the testing dataset
test_dataset = tf.keras.preprocessing.image_dataset_from_directory(
directory=test_dir,
labels='inferred',
label_mode='binary',
color_mode='rgb',
class_names=class_names,
batch_size=batch_size,
image_size=image_size,
shuffle=False
)
# Apply a function to the datasets using the map() method
# Normalize pixel values to [0, 1]
train_dataset = train_dataset.map(lambda x, y: (x / 255.0, y))
test_dataset = test_dataset.map(lambda x, y: (x / 255.0, y))
reduced_image_size = (int(image_size[0] * resize_factor), int(image_size[1] * resize_factor))
# Resize images in the datasets
train_dataset = train_dataset.map(lambda x, y: (tf.image.resize(x, reduced_image_size), y))
test_dataset = test_dataset.map(lambda x, y: (tf.image.resize(x, reduced_image_size), y))
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(reduced_image_size[0], reduced_image_size[1], 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
print('Model is compiled')
history = model.fit(train_dataset, epochs=epochs, batch_size=batch_size)
print('Model is trained')
# Evaluate the model on the test dataset
testing_loss, testing_accuracy = model.evaluate(test_dataset)
print(f'Test Loss: {testing_loss}, Test Accuracy: {testing_accuracy}')
# Access the accuracy and loss values from the history object
training_accuracy = history.history['accuracy']
training_loss = history.history['loss']
# Create subplots for accuracy and loss
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8))
# Plot accuracy
ax1.plot(range(1, len(training_accuracy) + 1), training_accuracy, label='Training Accuracy')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Accuracy')
ax1.set_title('Training Accuracy')
ax1.legend()
# Plot loss
ax2.plot(range(1, len(training_loss) + 1), training_loss, label='Training Loss')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Loss')
ax2.set_title('Training Loss')
ax2.legend()
plt.tight_layout()
# Save the figure
plt.savefig(f'{logs_dir}/training_plot.png')
logs = {
"Time": {
"date":datetime.datetime.now().strftime('%D'),
"time":datetime.datetime.now().strftime('%T')
},
"DIR-Config": {
"Main DIR": main_dir,
"Training SUB-DIR": train_dir,
"Testing SUB-DIR": test_dir
},
"Image-Config": {
"Image width":image_width,
"Image height":image_height,
"Image resize":resize_factor
},
"Training Config": {
"Batch size": batch_size,
"Epochs": epochs,
},
"MODEL OUT": {
"Training Loss":training_loss[-1],
"Training Accuracy":training_accuracy[-1],
"Training Progress": [f"Epoch {epoch+1}: Accuracy = {training_accuracy[epoch]}, Loss = {training_loss[epoch]}" for epoch in range(len(training_accuracy))],
"Testing Loss":testing_loss,
"Testing Accuracy": testing_accuracy,
}
}
# Write the data to json file
with open(f"{logs_dir}/zabbix_logs.json", "a") as json_file:
json.dump(logs, json_file)
print("Logs are saved")
# Save model
model.save('./MK-1')
print('Model is saved')