-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathmain.py
514 lines (445 loc) · 20 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import argparse
import copy
import multiprocessing
import os
import platform
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from graph4nlp.pytorch.datasets.squad import SQuADDataset
from graph4nlp.pytorch.models.graph2seq import Graph2Seq
from graph4nlp.pytorch.models.graph2seq_loss import Graph2SeqLoss
from graph4nlp.pytorch.modules.evaluation import BLEU, METEOR, ROUGE
from graph4nlp.pytorch.modules.graph_embedding_initialization.embedding_construction import (
WordEmbedding,
)
from graph4nlp.pytorch.modules.utils import constants as Constants
from graph4nlp.pytorch.modules.utils.config_utils import load_json_config
from graph4nlp.pytorch.modules.utils.copy_utils import prepare_ext_vocab
from graph4nlp.pytorch.modules.utils.generic_utils import EarlyStopping, to_cuda
from graph4nlp.pytorch.modules.utils.logger import Logger
from examples.pytorch.semantic_parsing.graph2seq.rgcn_lib.graph2seq import RGCNGraph2Seq
from .fused_embedding_construction import FusedEmbeddingConstruction
class QGModel(nn.Module):
def __init__(self, vocab, config):
super(QGModel, self).__init__()
self.config = config
self.vocab = vocab
self.use_coverage = self.config["model_args"]["decoder_args"]["rnn_decoder_share"][
"use_coverage"
]
# build Graph2Seq model
if config["model_args"]["graph_embedding_name"] == "rgcn":
self.g2s = RGCNGraph2Seq.from_args(config, self.vocab)
else:
self.g2s = Graph2Seq.from_args(config, self.vocab)
if "w2v" in self.g2s.graph_initializer.embedding_layer.word_emb_layers:
self.word_emb = self.g2s.graph_initializer.embedding_layer.word_emb_layers[
"w2v"
].word_emb_layer
else:
self.word_emb = WordEmbedding(
self.vocab.in_word_vocab.embeddings.shape[0],
self.vocab.in_word_vocab.embeddings.shape[1],
pretrained_word_emb=self.vocab.in_word_vocab.embeddings,
fix_emb=config["model_args"]["graph_initialization_args"]["fix_word_emb"],
).word_emb_layer
self.g2s.seq_decoder.tgt_emb = self.word_emb
self.loss_calc = Graph2SeqLoss(
ignore_index=self.vocab.out_word_vocab.PAD,
use_coverage=self.use_coverage,
coverage_weight=config["training_args"]["coverage_loss_ratio"],
)
# Replace the default embedding construction layer
# with the customized passage-answer alignment embedding construction layer
# TODO: delete the default layer and clear the memory
embedding_styles = config["model_args"]["graph_initialization_args"]["embedding_style"]
self.g2s.graph_initializer.embedding_layer = FusedEmbeddingConstruction(
self.vocab.in_word_vocab,
embedding_styles["single_token_item"],
emb_strategy=embedding_styles["emb_strategy"],
hidden_size=config["model_args"]["graph_initialization_args"]["hidden_size"],
num_rnn_layers=embedding_styles.get("num_rnn_layers", 1),
fix_word_emb=config["model_args"]["graph_initialization_args"]["fix_word_emb"],
fix_bert_emb=config["model_args"]["graph_initialization_args"]["fix_bert_emb"],
bert_model_name=embedding_styles.get("bert_model_name", "bert-base-uncased"),
bert_lower_case=embedding_styles.get("bert_lower_case", True),
word_dropout=config["model_args"]["graph_initialization_args"]["word_dropout"],
bert_dropout=config["model_args"]["graph_initialization_args"].get(
"bert_dropout", None
),
rnn_dropout=config["model_args"]["graph_initialization_args"]["rnn_dropout"],
)
self.graph_construction_name = self.g2s.graph_construction_name
self.vocab_model = self.g2s.vocab_model
def encode_init_node_feature(self, data):
# graph embedding initialization
batch_gd = self.g2s.graph_initializer(data)
return batch_gd
def forward(self, data, oov_dict=None, require_loss=True):
batch_gd = self.encode_init_node_feature(data)
if require_loss:
tgt = data["tgt_tensor"]
else:
tgt = None
prob, enc_attn_weights, coverage_vectors = self.g2s.encoder_decoder(
batch_gd, oov_dict=oov_dict, tgt_seq=tgt
)
if require_loss:
tgt = data["tgt_tensor"]
min_length = min(prob.shape[1], tgt.shape[1])
prob = prob[:, :min_length, :]
tgt = tgt[:, :min_length]
loss = self.loss_calc(
prob,
label=tgt,
enc_attn_weights=enc_attn_weights,
coverage_vectors=coverage_vectors,
)
return prob, loss * min_length / 2
else:
return prob
def inference_forward(self, data, beam_size, topk=1, oov_dict=None):
batch_gd = self.encode_init_node_feature(data)
return self.g2s.encoder_decoder_beam_search(
batch_graph=batch_gd, beam_size=beam_size, topk=topk, oov_dict=oov_dict
)
def post_process(self, decode_results, vocab):
return self.g2s.post_process(decode_results, vocab)
class ModelHandler:
def __init__(self, config):
super(ModelHandler, self).__init__()
self.config = config
self.use_copy = self.config["model_args"]["decoder_args"]["rnn_decoder_share"]["use_copy"]
self.use_coverage = self.config["model_args"]["decoder_args"]["rnn_decoder_share"][
"use_coverage"
]
log_config = copy.deepcopy(config)
del log_config["env_args"]["device"]
self.logger = Logger(
config["checkpoint_args"]["out_dir"],
config=log_config,
overwrite=True,
)
self.logger.write(config["checkpoint_args"]["out_dir"])
self._build_dataloader()
self._build_model()
self._build_optimizer()
self._build_evaluation()
def _build_dataloader(self):
dataset = SQuADDataset(
root_dir=self.config["model_args"]["graph_construction_args"][
"graph_construction_share"
]["root_dir"],
topology_subdir=self.config["model_args"]["graph_construction_args"][
"graph_construction_share"
]["topology_subdir"],
graph_construction_name=self.config["model_args"]["graph_construction_name"],
dynamic_init_graph_name=self.config["model_args"]["graph_construction_args"][
"graph_construction_private"
].get("dynamic_init_graph_type", None),
dynamic_init_topology_aux_args={"dummy_param": 0},
pretrained_word_emb_name=self.config["preprocessing_args"]["pretrained_word_emb_name"],
merge_strategy=self.config["model_args"]["graph_construction_args"][
"graph_construction_private"
]["merge_strategy"],
edge_strategy=self.config["model_args"]["graph_construction_args"][
"graph_construction_private"
]["edge_strategy"],
max_word_vocab_size=self.config["preprocessing_args"]["top_word_vocab"],
min_word_vocab_freq=self.config["preprocessing_args"]["min_word_freq"],
word_emb_size=self.config["preprocessing_args"]["word_emb_size"],
nlp_processor_args=self.config["model_args"]["graph_construction_args"][
"graph_construction_share"
].get("nlp_processor_args", None),
share_vocab=self.config["preprocessing_args"]["share_vocab"],
seed=self.config["env_args"]["seed"],
thread_number=self.config["model_args"]["graph_construction_args"][
"graph_construction_share"
]["thread_number"],
)
self.train_dataloader = DataLoader(
dataset.train,
batch_size=self.config["training_args"]["batch_size"],
shuffle=True,
num_workers=self.config["env_args"]["num_workers"],
collate_fn=dataset.collate_fn,
)
self.val_dataloader = DataLoader(
dataset.val,
batch_size=self.config["training_args"]["batch_size"],
shuffle=False,
num_workers=self.config["env_args"]["num_workers"],
collate_fn=dataset.collate_fn,
)
self.test_dataloader = DataLoader(
dataset.test,
batch_size=self.config["training_args"]["batch_size"],
shuffle=False,
num_workers=self.config["env_args"]["num_workers"],
collate_fn=dataset.collate_fn,
)
self.vocab = dataset.vocab_model
self.num_train = len(dataset.train)
self.num_val = len(dataset.val)
self.num_test = len(dataset.test)
print(
"Train size: {}, Val size: {}, Test size: {}".format(
self.num_train, self.num_val, self.num_test
)
)
self.logger.write(
"Train size: {}, Val size: {}, Test size: {}".format(
self.num_train, self.num_val, self.num_test
)
)
def _build_model(self):
self.model = QGModel(self.vocab, self.config).to(self.config["env_args"]["device"])
def _build_optimizer(self):
parameters = [p for p in self.model.parameters() if p.requires_grad]
self.optimizer = optim.Adam(parameters, lr=self.config["training_args"]["lr"])
self.stopper = EarlyStopping(
os.path.join(self.config["checkpoint_args"]["out_dir"], Constants._SAVED_WEIGHTS_FILE),
patience=self.config["training_args"]["patience"],
)
self.scheduler = ReduceLROnPlateau(
self.optimizer,
mode="max",
factor=self.config["training_args"]["lr_reduce_factor"],
patience=self.config["training_args"]["lr_patience"],
verbose=True,
)
def _build_evaluation(self):
self.metrics = {"BLEU": BLEU(n_grams=[1, 2, 3, 4]), "METEOR": METEOR(), "ROUGE": ROUGE()}
def train(self):
for epoch in range(self.config["training_args"]["epochs"]):
self.model.train()
train_loss = []
dur = []
t0 = time.time()
for i, data in enumerate(self.train_dataloader):
data = all_to_cuda(data, self.config["env_args"]["device"])
data["graph_data"] = data["graph_data"].to(self.config["env_args"]["device"])
oov_dict = None
if self.use_copy:
oov_dict, tgt = prepare_ext_vocab(
data["graph_data"],
self.vocab,
gt_str=data["tgt_text"],
device=self.config["env_args"]["device"],
)
data["tgt_tensor"] = tgt
logits, loss = self.model(data, oov_dict=oov_dict, require_loss=True)
self.optimizer.zero_grad()
loss.backward()
if self.config["training_args"].get("grad_clipping", None) not in (None, 0):
# Clip gradients
parameters = [p for p in self.model.parameters() if p.requires_grad]
torch.nn.utils.clip_grad_norm_(
parameters, self.config["training_args"]["grad_clipping"]
)
self.optimizer.step()
train_loss.append(loss.item())
# pred = torch.max(logits, dim=-1)[1].cpu()
dur.append(time.time() - t0)
if (i + 1) % 100 == 0:
format_str = (
"Epoch: [{} / {}] | Step: {} / {} | Time: {:.2f}s | Loss: {:.4f} |"
" Val scores:".format(
epoch + 1,
self.config["training_args"]["epochs"],
i,
len(self.train_dataloader),
np.mean(dur),
np.mean(train_loss),
)
)
print(format_str)
self.logger.write(format_str)
val_scores = self.evaluate(self.val_dataloader)
if epoch > 15:
self.scheduler.step(val_scores[self.config["training_args"]["early_stop_metric"]])
format_str = "Epoch: [{} / {}] | Time: {:.2f}s | Loss: {:.4f} | Val scores:".format(
epoch + 1, self.config["training_args"]["epochs"], np.mean(dur), np.mean(train_loss)
)
format_str += self.metric_to_str(val_scores)
print(format_str)
self.logger.write(format_str)
if epoch > 0 and self.stopper.step(
val_scores[self.config["training_args"]["early_stop_metric"]], self.model
):
break
return self.stopper.best_score
def evaluate(self, dataloader):
self.model.eval()
with torch.no_grad():
pred_collect = []
gt_collect = []
for data in dataloader:
data = all_to_cuda(data, self.config["env_args"]["device"])
data["graph_data"] = data["graph_data"].to(self.config["env_args"]["device"])
if self.use_copy:
oov_dict = prepare_ext_vocab(
data["graph_data"], self.vocab, device=self.config["env_args"]["device"]
)
ref_dict = oov_dict
else:
oov_dict = None
ref_dict = self.vocab.out_word_vocab
prob = self.model(data, oov_dict=oov_dict, require_loss=False)
pred = prob.argmax(dim=-1)
pred_str = wordid2str(pred.detach().cpu(), ref_dict)
pred_collect.extend(pred_str)
gt_collect.extend(data["tgt_text"])
scores = self.evaluate_predictions(gt_collect, pred_collect)
return scores
def translate(self, dataloader):
self.model.eval()
with torch.no_grad():
pred_collect = []
gt_collect = []
for data in dataloader:
data = all_to_cuda(data, self.config["env_args"]["device"])
data["graph_data"] = data["graph_data"].to(self.config["env_args"]["device"])
if self.use_copy:
oov_dict = prepare_ext_vocab(
data["graph_data"], self.vocab, device=self.config["env_args"]["device"]
)
ref_dict = oov_dict
else:
oov_dict = None
ref_dict = self.vocab.out_word_vocab
batch_gd = self.model.encode_init_node_feature(data)
prob = self.model.g2s.encoder_decoder_beam_search(
batch_gd, self.config["inference_args"]["beam_size"], topk=1, oov_dict=oov_dict
)
pred_ids = (
torch.zeros(
len(prob),
self.config["model_args"]["decoder_args"]["rnn_decoder_private"][
"max_decoder_step"
],
)
.fill_(ref_dict.EOS)
.to(self.config["env_args"]["device"])
.int()
)
for i, item in enumerate(prob):
item = item[0]
seq = [j.view(1, 1) for j in item]
seq = torch.cat(seq, dim=1)
pred_ids[i, : seq.shape[1]] = seq
pred_str = wordid2str(pred_ids.detach().cpu(), ref_dict)
pred_collect.extend(pred_str)
gt_collect.extend(data["tgt_text"])
scores = self.evaluate_predictions(gt_collect, pred_collect)
return scores
def test(self):
# restored best saved model
self.model = torch.load(
os.path.join(self.config["checkpoint_args"]["out_dir"], Constants._SAVED_WEIGHTS_FILE)
).to(self.config["env_args"]["device"])
t0 = time.time()
scores = self.translate(self.test_dataloader)
dur = time.time() - t0
format_str = "Test examples: {} | Time: {:.2f}s | Test scores:".format(self.num_test, dur)
format_str += self.metric_to_str(scores)
print(format_str)
self.logger.write(format_str)
return scores
def evaluate_predictions(self, ground_truth, predict):
output = {}
for name, scorer in self.metrics.items():
score = scorer.calculate_scores(ground_truth=ground_truth, predict=predict)
if name.upper() == "BLEU":
for i in range(len(score[0])):
output["BLEU_{}".format(i + 1)] = score[0][i]
else:
output[name] = score[0]
return output
def metric_to_str(self, metrics):
format_str = ""
for k in metrics:
format_str += " {} = {:0.5f},".format(k.upper(), metrics[k])
return format_str[:-1]
def main(config):
# configure
np.random.seed(config["env_args"]["seed"])
torch.manual_seed(config["env_args"]["seed"])
if not config["env_args"]["no_cuda"] and torch.cuda.is_available():
print("[ Using CUDA ]")
config["env_args"]["device"] = torch.device(
"cuda" if config["env_args"]["gpu"] < 0 else "cuda:%d" % config["env_args"]["gpu"]
)
cudnn.benchmark = True
torch.cuda.manual_seed(config["env_args"]["seed"])
else:
config["env_args"]["device"] = torch.device("cpu")
print("\n" + config["checkpoint_args"]["out_dir"])
runner = ModelHandler(config)
t0 = time.time()
val_score = runner.train()
test_scores = runner.test()
# print('Removed best saved model file to save disk space')
# os.remove(runner.stopper.save_model_path)
runtime = time.time() - t0
print("Total runtime: {:.2f}s".format(time.time() - t0))
runner.logger.write("Total runtime: {:.2f}s\n".format(runtime))
runner.logger.close()
return val_score, test_scores
def wordid2str(word_ids, vocab):
ret = []
assert len(word_ids.shape) == 2, print(word_ids.shape)
for i in range(word_ids.shape[0]):
id_list = word_ids[i, :]
ret_inst = []
for j in range(id_list.shape[0]):
if id_list[j] == vocab.EOS or id_list[j] == vocab.PAD:
break
token = vocab.getWord(id_list[j])
ret_inst.append(token)
ret.append(" ".join(ret_inst))
return ret
def all_to_cuda(data, device=None):
if isinstance(data, torch.Tensor):
data = to_cuda(data, device)
elif isinstance(data, (list, dict)):
keys = range(len(data)) if isinstance(data, list) else data.keys()
for k in keys:
if isinstance(data[k], torch.Tensor):
data[k] = to_cuda(data[k], device)
return data
################################################################################
# ArgParse and Helper Functions #
################################################################################
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-json_config",
"--json_config",
required=True,
type=str,
help="path to the json config file",
)
args = vars(parser.parse_args())
return args
def print_config(config):
print("**************** MODEL CONFIGURATION ****************")
for key in sorted(config.keys()):
val = config[key]
keystr = "{}".format(key) + (" " * (24 - len(key)))
print("{} --> {}".format(keystr, val))
print("**************** MODEL CONFIGURATION ****************")
if __name__ == "__main__":
if platform.system() == "Darwin":
multiprocessing.set_start_method("spawn")
cfg = get_args()
config = load_json_config(cfg["json_config"])
print_config(config)
main(config)