-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot.py
190 lines (159 loc) · 5.8 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# plot.py
import torch
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc, average_precision_score, precision_recall_curve
def configure_plotting():
smaller_size = 13
medium_size = 14
bigger_size = 16
plt.rc('font', size=bigger_size) # controls default text sizes
plt.rc('axes', titlesize=medium_size) # fontsize of the axes title
plt.rc('axes', labelsize=medium_size) # fontsize of the x and y labels
plt.rc('xtick', labelsize=smaller_size) # fontsize of the tick labels
plt.rc('ytick', labelsize=smaller_size) # fontsize of the tick labels
plt.rc('legend', fontsize=smaller_size) # legend fontsize
plt.rc('figure', titlesize=bigger_size) # fontsize of the figure title
def fl_line(x, fl_n):
return [sum(x[i:i + fl_n]) / fl_n for i in range(0, len(x), fl_n)]
def plot_loss(train_loss, test_loss, fl_n, dir_save):
configure_plotting()
train_loss = fl_line(train_loss, fl_n)
test_loss = fl_line(test_loss, fl_n)
steps = len(train_loss)
x_step = fl_line(np.arange(steps), fl_n)
plt.figure(figsize=(9, 4), dpi=300)
plt.subplot(1, 2, 1)
plt.plot(x_step, train_loss)
plt.title('Train Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.subplot(1, 2, 2)
plt.plot(x_step, test_loss)
plt.title('Test Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.tight_layout()
plt.savefig(f"{dir_save}/fig1.pdf")
def plot_pheno(train_loss, train_accuracy, test_loss, test_accuracy, fl_n, dir_save):
configure_plotting()
train_loss = fl_line(train_loss, fl_n)
train_accuracy = fl_line(train_accuracy, fl_n)
test_loss = fl_line(test_loss, fl_n)
test_accuracy = fl_line(test_accuracy, fl_n)
steps = len(train_loss)
x_step = fl_line(np.arange(steps), fl_n)
plt.figure(figsize=(9, 8), dpi=300)
plt.subplot(2, 2, 1)
plt.plot(x_step, train_loss)
plt.title('Train Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.subplot(2, 2, 2)
plt.plot(x_step, test_loss)
plt.title('Test Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.subplot(2, 2, 3)
plt.plot(x_step, train_accuracy)
plt.title('Train Accuracy')
plt.xlabel('Steps')
plt.ylabel('Accuracy')
plt.subplot(2, 2, 4)
plt.plot(x_step, test_accuracy)
plt.title('Test Accuracy')
plt.xlabel('Steps')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.savefig(f"{dir_save}/fig2.pdf")
def plot_auprc_auroc(train_auprc, train_auroc, test_auprc, test_auroc, fl_n, dir_save):
configure_plotting()
train_auprc = fl_line(train_auprc, fl_n)
train_auroc = fl_line(train_auroc, fl_n)
test_auprc = fl_line(test_auprc, fl_n)
test_auroc = fl_line(test_auroc, fl_n)
steps = len(train_auprc)
x_step = fl_line(np.arange(steps), fl_n)
plt.figure(figsize=(9, 8), dpi=300)
plt.subplot(2, 2, 1)
plt.plot(x_step, train_auprc)
plt.title('Train auprc')
plt.xlabel('Steps')
plt.ylabel('auprc')
plt.subplot(2, 2, 2)
plt.plot(x_step, test_auprc)
plt.title('Test auprc')
plt.xlabel('Steps')
plt.ylabel('auprc')
plt.subplot(2, 2, 3)
plt.plot(x_step, train_auroc)
plt.title('Train auroc')
plt.xlabel('Steps')
plt.ylabel('auroc')
plt.subplot(2, 2, 4)
plt.plot(x_step, test_auroc)
plt.title('Test auroc')
plt.xlabel('Steps')
plt.ylabel('auroc')
plt.tight_layout()
plt.savefig(f"{dir_save}/fig3.pdf")
def plot_proteomics_predict(train_loss, train_accuracy, test_loss, test_accuracy, fl_n, dir_save):
configure_plotting()
train_loss = fl_line(train_loss, fl_n)
train_accuracy = fl_line(train_accuracy, fl_n)
test_loss = fl_line(test_loss, fl_n)
test_accuracy = fl_line(test_accuracy, fl_n)
steps = len(train_loss)
x_step = fl_line(np.arange(steps), fl_n)
plt.figure(figsize=(9, 8), dpi=300)
plt.subplot(2, 2, 1)
plt.plot(x_step, train_loss)
plt.title('Train Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.subplot(2, 2, 2)
plt.plot(x_step, test_loss)
plt.title('Test Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.subplot(2, 2, 3)
plt.plot(x_step, train_accuracy)
plt.title('Train Accuracy')
plt.xlabel('Steps')
plt.ylabel('Accuracy')
plt.subplot(2, 2, 4)
plt.plot(x_step, test_accuracy)
plt.title('Test Accuracy')
plt.xlabel('Steps')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.savefig(f"{dir_save}/fig4.pdf")
def binary_auroc_plt(output, target):
return auc(*roc_curve(target, output)[:2])
def plot_auroc(pheno_predict_np, ph_all_np, dir_save, save_tailfix):
auroc = binary_auroc_plt(pheno_predict_np, ph_all_np).item()
fpr, tpr, _ = roc_curve(ph_all_np, pheno_predict_np)
plt.figure(figsize=(3, 3), dpi=300)
lw = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % auroc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="best")
plt.savefig(f"{dir_save}/fig_auroc_{save_tailfix}.pdf")
def plot_auprc(pheno_predict_np, ph_all_np, dir_save, save_tailfix):
average_precision = average_precision_score(ph_all_np, pheno_predict_np)
precision, recall, _ = precision_recall_curve(ph_all_np, pheno_predict_np)
plt.figure(figsize=(3, 3), dpi=200)
lw = 2
plt.plot(recall, precision, color='limegreen', lw=lw, label='PR curve (area = %0.2f)' % average_precision)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.legend(loc="best")
plt.savefig(f"{dir_save}/fig_auprc_{save_tailfix}.pdf")