-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimple_example.py
165 lines (140 loc) · 6.81 KB
/
simple_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
""" Example of the TA decomposition on the synthetic data experimentation from
the paper:
'Total activation: fMRI deconvolution through spatio-temporal regularization'
Fikret Isik Karahanoglu, Cesar Caballero-Gaudes, François Lazeyras,
Dimitri Van De Ville
"""
# Authors: Hamza Cherkaoui <hamza.cherkaoui@inria.fr>
# License: BSD (3-clause)
import os
import time
import argparse
import matplotlib.pyplot as plt
import numpy as np
from pyta import TA
from pyta.data import little_brain
from pyta.hrf_model import double_gamma_hrf
from pyta.convolution import make_toeplitz
from pyta.utils import check_random_state, compute_lbda_max
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--max-iter', type=int, default=50,
help='Max number of iterations for the global loop.')
parser.add_argument('--max-iter-z', type=int, default=300,
help='Max number of iterations for the z-step.')
parser.add_argument('--max-training-iter', type=int, default=300,
help='Max number of iterations to train the '
'learnable networks for the z-step.')
parser.add_argument('--solver-type', type=str, default='fista-z-step',
help="Solver type for the z-step, possible choice are"
" ['ista-z-step', 'fista-z-step', 'learn-z-step'].")
parser.add_argument('--n-time-frames', type=int, default=200,
help='Number of timeframes to retain from the the '
'data fMRI.')
parser.add_argument('--plots-dir', type=str, default='outputs',
help='Outputs directory for plots')
parser.add_argument('--seed', type=int, default=None,
help='Set the seed for the experiment. Can be used '
'for debug or to freeze experiments.')
args = parser.parse_args()
print(__doc__)
print('*' * 80)
t0 = time.time()
if not os.path.exists(args.plots_dir):
os.makedirs(args.plots_dir)
rng = check_random_state(args.seed)
print(f'Seed used = {args.seed}') # noqa: E999
###########################################################################
# Synthetic data generation
t_r = 1.0
hrf_time_frames = 20
nx = ny = nz = 3
n_times_valid = args.n_time_frames - hrf_time_frames + 1
h = double_gamma_hrf(t_r, hrf_time_frames)
H = make_toeplitz(h, n_times_valid).T
params = dict(tr=t_r, nx=nx, ny=ny, nz=nz, N=n_times_valid, h=h, seed=rng)
y, x, u, _, _ = little_brain(**params)
lbda_max = compute_lbda_max(H, y, per_sample=True)
lbda_max = lbda_max.reshape(nx, ny, nz)
y /= np.repeat(lbda_max[..., None], args.n_time_frames, axis=-1)
x /= np.repeat(lbda_max[..., None], args.n_time_frames, axis=-1)
u /= np.repeat(lbda_max[..., None], n_times_valid, axis=-1)
###########################################################################
# Main experimentation
lbda = 0.1
params = dict(t_r=t_r, h=h, n_times_valid=n_times_valid,
max_iter_z=args.max_iter_z,
net_solver_training_type='recursive',
max_iter_training_net=args.max_training_iter,
solver_type=args.solver_type, verbose=1)
ta = TA(**params)
est_x, est_u, _ = ta.prox_t(y, lbda)
###########################################################################
# Plotting
nx, ny, nz, N = est_x.shape
voxels_of_interest = [
(int(0.15*nx), int(0.5*ny), int(0.5*nz), slice(None)), # c1
(int(0.65*nx), int(0.15*ny), int(0.5*nz), slice(None)), # c2
(int(0.65*nx), int(0.65*ny), int(0.25*nz), slice(None)), # c3
(int(0.65*nx), int(0.65*ny), int(0.75*nz), slice(None)), # c4
(int(0.3*nx), int(0.15*ny), int(0.5*nz), slice(None)), # b12
(int(0.65*nx), int(0.3*ny), int(0.25*nz), slice(None)), # b23
(int(0.65*nx), int(0.3*ny), int(0.75*nz), slice(None)), # b24
(int(0.65*nx), int(0.65*ny), int(0.5*nz), slice(None)), # b34
(int(0.3*nx), int(0.3*ny), nz-1, slice(None)), # i124
(int(0.3*nx), int(0.3*ny), int(0.5*nz), slice(None)), # i1234
(int(0.3*nx), int(0.3*ny), 0, slice(None)), # i123
(0, 0, 0, slice(None)), # f1
(nx-1, ny-1, nz-1, slice(None)), # f4
]
name_of_interest = ["center region 1",
"center region 2",
"center region 3",
"center region 4",
"border between region 1 and 2",
"border between regions 2 and 3",
"border between regions 2 and 4",
"border between regions 3 and 4",
"intersection between regions 1, 2 and 4",
"intersection between regions 1, 2, 3 and 4",
"intersection between regions 1, 2 and 3",
"border corner region 1",
"border corner region 4",
]
for i, voxel in enumerate(voxels_of_interest):
fig = plt.figure(i, figsize=(12, 6))
y_ = y[voxel]
x_ = x[voxel]
est_x_ = est_x[voxel]
u_ = u[voxel]
est_u_ = est_u[voxel]
ax1 = fig.add_subplot(211)
ax1.plot(y_, ls='-', label="noisy AR signal", lw=1,
color='tab:red')
ax1.plot(x_, ls='-', label="original AR signal", lw=2,
color='tab:blue')
ax1.plot(est_x_, ls='--', label="estimated AR signal", lw=2,
color='tab:orange')
plt.grid()
plt.xlabel("Time-frames [-]", fontsize=15)
plt.ylabel("BOLD [-]", fontsize=15)
plt.legend(fontsize=12)
ax1.set_title(f"Activity related signal (voxel "
f"'{name_of_interest[i]}')", fontsize=15)
ax2 = fig.add_subplot(212, sharex=ax1)
ax2.plot(100. * u_, ls='-', label="original AI signal", lw=2,
color='tab:blue')
ax2.plot(100. * est_u_, ls='-', label="estimated AI signal", lw=2,
color='tab:orange')
plt.grid()
plt.xlabel("Time-frames [-]", fontsize=15)
plt.ylabel("(de-)Activation [%]", fontsize=15)
plt.legend(fontsize=12)
ax2.set_title(f"Activity inducing signal (voxel "
f"'{name_of_interest[i]}')", fontsize=15)
plt.tight_layout()
filename = "voxel_{0}_{1}_{2}.pdf".format(*voxel[:-1])
filename = os.path.join(args.plots_dir, filename)
plt.savefig(filename, dpi=300)
delta_t = time.strftime("%H h %M min %S s", time.gmtime(time.time() - t0))
print("Script runs in: {}".format(delta_t))