-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwer_bootstrap_resampling.py
190 lines (165 loc) · 6.96 KB
/
wer_bootstrap_resampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python3
# Copyright 2024 FBK
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
# Credits: this implementation is inspired by the BLEU statistical significance
# implementation in https://github.com/pytorch/translate/.
import argparse
from typing import List, NamedTuple, Optional
import numpy as np
import pandas as pd
import jiwer
def get_sufficient_stats(hypotheses: List[str], references: List[str]) -> pd.DataFrame:
"""
Computes the sentence-level statistics required to compute WER.
"""
assert len(hypotheses) == len(references), \
f"There are {len(hypotheses)} hypothesis sentences but {len(references)} reference " \
"sentences"
sufficient_stats: List[List[int]] = []
for sentence, ref in zip(hypotheses, references):
sentence_wer_stats = jiwer.process_words(ref, sentence)
sufficient_stats.append([
sentence_wer_stats.hits,
sentence_wer_stats.substitutions,
sentence_wer_stats.insertions,
sentence_wer_stats.deletions])
return pd.DataFrame(
sufficient_stats, columns=["hits", "substitutions", "insertions", "deletions"])
class PairedBootstrapOutput(NamedTuple):
baseline_wer: float
evaluated_wer: float
num_samples: int
# Number of samples where the baseline was better than the evaluated system.
baseline_better: int
# Number of samples where the baseline and evaluated system had identical WER score.
num_equal: int
# Number of samples where the evaluated system was better than baseline.
evaluated_better: int
def compute_wer_from_stats(stats: pd.DataFrame):
"""
Returns the WER score starting from sentence-level statistics.
The formula is taken from jiwer's `process_words` implementation.
"""
corpus_stats = stats.sum(axis=0)
edits = float(corpus_stats.substitutions + corpus_stats.deletions + corpus_stats.insertions)
total = float(corpus_stats.hits + corpus_stats.substitutions + corpus_stats.deletions)
return edits / total
def paired_bootstrap_resample(
baseline_stats: pd.DataFrame,
evaluated_stats: pd.DataFrame,
num_samples: int = 1000,
sample_size: Optional[int] = None,
) -> PairedBootstrapOutput:
"""
From `Statistical significance tests for machine translation evaluation (Koehn, 2004)
<http://aclweb.org/anthology/W04-3250>`_.
"""
assert len(baseline_stats) == len(evaluated_stats), \
f"Length mismatch - baseline has {len(baseline_stats)} lines while evaluated has " \
f"{len(evaluated_stats)} lines."
num_sentences = len(baseline_stats)
if not sample_size:
# Defaults to sampling new corpora of the same size as the original.
# This is not identical to the original corpus since we are sampling with replacement.
sample_size = num_sentences
indices = np.random.randint(low=0, high=num_sentences, size=(num_samples, sample_size))
baseline_better: int = 0
evaluated_better: int = 0
num_equal: int = 0
for index in indices:
baseline_wer = compute_wer_from_stats(baseline_stats.iloc[index])
evaluated_wer = compute_wer_from_stats(evaluated_stats.iloc[index])
if evaluated_wer < baseline_wer:
evaluated_better += 1
elif baseline_wer < evaluated_wer:
baseline_better += 1
else:
# If the baseline corpus and new corpus are identical, this
# degenerate case may occur.
num_equal += 1
return PairedBootstrapOutput(
baseline_wer=compute_wer_from_stats(baseline_stats),
evaluated_wer=compute_wer_from_stats(evaluated_stats),
num_samples=num_samples,
baseline_better=baseline_better,
num_equal=num_equal,
evaluated_better=evaluated_better)
def paired_bootstrap_resample_from_files(
reference_file: str,
baseline_file: str,
evaluated_file: str,
num_samples: int = 1000,
sample_size: Optional[int] = None) -> PairedBootstrapOutput:
with open(reference_file, "r") as f:
references: List[str] = [line for line in f]
with open(baseline_file, "r") as f:
baseline_hypotheses: List[str] = [line for line in f]
baseline_stats: pd.DataFrame = get_sufficient_stats(
hypotheses=baseline_hypotheses, references=references)
with open(evaluated_file, "r") as f:
evaluated_hypotheses: List[str] = [line for line in f]
evaluated_stats: pd.DataFrame = get_sufficient_stats(
hypotheses=evaluated_hypotheses, references=references)
return paired_bootstrap_resample(
baseline_stats=baseline_stats,
evaluated_stats=evaluated_stats,
num_samples=num_samples,
sample_size=sample_size)
def main():
parser = argparse.ArgumentParser()
tokenization_warning = "Input should be tokenized and punctuation should be removed.",
parser.add_argument(
"--reference-file",
type=str,
required=True,
help=f"Text file containing reference sentences. {tokenization_warning}",
)
parser.add_argument(
"--baseline-file",
type=str,
required=True,
help="Text file containing sentences translated by the baseline system. "
f" {tokenization_warning}",
)
parser.add_argument(
"--evaluated-file",
type=str,
required=True,
help="Text file containing sentences translated by the evaluated system. "
f"{tokenization_warning}",
)
parser.add_argument(
"--num-samples",
type=int,
required=False,
default=1000,
help="Number of comparisons to be executed.",
)
parser.add_argument(
"--sample-size",
type=int,
required=False,
help="Number of sentences sampled for each comparison.",
)
args = parser.parse_args()
output = paired_bootstrap_resample_from_files(
reference_file=args.reference_file,
baseline_file=args.baseline_file,
evaluated_file=args.evaluated_file,
num_samples=args.num_samples,
sample_size=getattr(args, "sample_size", None))
print(f"Baseline system WER: {output.baseline_wer:.4f}")
print(f"Evaluated system WER: {output.evaluated_wer:.4f}")
print(f"WER delta: {output.evaluated_wer - output.baseline_wer:.4f} ")
print(f"Baseline system better confidence: {output.baseline_better / output.num_samples:.2%}")
print(f"Evaluated system better confidence: {output.evaluated_better / output.num_samples:.2%}")
if __name__ == "__main__":
main()