-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathkerasLSTMStock1to1.py
189 lines (173 loc) · 6.44 KB
/
kerasLSTMStock1to1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 1 21:17:06 2020
@author: 64054
"""
import os
import sys
#数据预处理以及绘制图形需要的模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
##
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, BatchNormalization
###############################################################################
"""
从csv文件中读取数据并将数据按照实践从历史到现在处理好
"""
def sotck_dataset():
#从csv读取数据
dataset = pd.read_csv('./000001.csv', encoding = 'gb18030')
#print(dataset)
#数据集的维度
print(dataset.shape)
#将开盘价转换为整数
dataset['开盘价'] = dataset['开盘价'].astype(int)
# 列名选取行
dataframeDataset = dataset.loc[1:, ['开盘价']]
# 按时间反转下数据
dataframeDatasetReverse = dataframeDataset.reindex(index = dataframeDataset.index[::-1])
#python list
listDataset = dataframeDatasetReverse.values
#print(ndarrayDataset)
#画图大盘数据图
#plt.plot(narrayDataset[:,0], narrayDataset[:,1])
#plt.show()
return dataframeDatasetReverse, listDataset
"""
归一化函数
"""
def sc_fit_transform(nDlist):
#将所有数据归一化为0-1的范围
sc = MinMaxScaler(feature_range=(0, 1))
'''
fit_transform()对部分数据先拟合fit,
找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的),
然后对该trainData进行转换transform,从而实现数据的标准化、归一化等等。
'''
dataset_transform = sc.fit_transform(X=nDlist)
#归一化后的数据
return sc, np.array(dataset_transform)
"""
反归一化函数
"""
def sc_inverse_transform(sc, nDlist):
return scTestDataseY.inverse_transform(X=nDlist)
###############################################################################
#需要之前5次的股票数据来预测下一次的数据,
need_num = 5
#训练数据的大小
training_num = 240
#测试数据的大小
test_num = 1
#迭代训练10次
epoch = 10
#每次取数据数量
batch_size = 10
###############################################################################
#数据处理
# 获取数据
dataframeDataset, listDataset = sotck_dataset()
# 生成训练集开盘价巡数据集
xTrainDataset = []
xTrainDataset = listDataset[0:training_num]
# 每次的下次开盘价是训练结果
yTrainDataset = []
yTrainDataset = listDataset[1:training_num+1]
#print(xTrainDataset)
#print(yTrainDataset)
###############################################################################
#原始数据归一化
#转换位n行1列的二维数组
xTrainDataset = np.array(xTrainDataset)
xTrainDataset = xTrainDataset.reshape(-1,1)
scTrainDataseX, xTrainDataset = sc_fit_transform(xTrainDataset)
yTrainDataset = np.array(yTrainDataset)
yTrainDataset = yTrainDataset.reshape(-1,1)
scTrainDataseY, yTrainDataset = sc_fit_transform(yTrainDataset)
print(xTrainDataset.shape)
print(yTrainDataset.shape)
###############################################################################
# 生成lstm模型需要的训练集数据和
xTrain = []
for i in range(need_num, training_num):
xTrain.append(xTrainDataset[i-need_num:i])
xTrain = np.array(xTrain)
#print(xTrain)
print(xTrain.shape)
#因为LSTM要求输入的数据格式为三维的,[training_number, time_steps, 1],因此对数据进行相应转化
xTrain = np.reshape(xTrain, (xTrain.shape[0], xTrain.shape[1], 1))
#print(xTrain)
print(xTrain.shape)
yTrain = []
for i in range(need_num, training_num):
yTrain.append(yTrainDataset[i])
yTrain = np.array(yTrain)
#print(yTrain)
print(yTrain.shape)
###############################################################################
#构建网络,使用的是序贯模型
model = Sequential()
#return_sequences=True返回的是全部输出,LSTM做第一层时,需要指定输入shape
model.add(LSTM(units=128, return_sequences=True, input_shape=[xTrain.shape[1], 1]))
model.add(BatchNormalization())
model.add(LSTM(units=128))
model.add(BatchNormalization())
model.add(Dense(units=1))
#进行配置
model.compile(optimizer='adam',
loss='mean_squared_error',
metrics=['accuracy'])
model.fit(x=xTrain, y=yTrain, epochs=epoch, batch_size=batch_size)
###############################################################################
#进行测试数据的处理
#生成训练集开盘价巡数据集
xTestDataset = []
xTestDataset = listDataset[test_num:training_num+test_num]
# 每次的下次开盘价是训练结果
yTestDataset = []
yTestDataset = listDataset[test_num+1:training_num+test_num+1]
#测试集数据归一化
xTestDataset = np.array(xTestDataset)
xTestDataset = xTestDataset.reshape(-1,1)
scTesDatasetX, xTestDataset = sc_fit_transform(xTestDataset)
yTestDataset = np.array(yTestDataset)
yTestDataset = yTestDataset.reshape(-1,1)
scTestDataseY, yTestDataset = sc_fit_transform(yTestDataset)
#print(xTestDataset.shape)
#print(yTestDataset.shape)
#因为LSTM要求输入的数据格式为三维的,[training_number, time_steps, 1],因此对数据进行相应转化
# 生成lstm模型需要的训练集数据和
xTest = []
for i in range(need_num, training_num):
xTest.append(xTestDataset[i-need_num:i])
xTest = np.array(xTest)
#print(xTrain)
print(xTest.shape)
#因为LSTM要求输入的数据格式为三维的,[training_number, time_steps, 1],因此对数据进行相应转化
xTest = np.reshape(xTest, (xTest.shape[0], xTest.shape[1], 1))
#print(xTrain)
print(xTest.shape)
yTest = []
for i in range(need_num, training_num):
yTest.append(yTestDataset[i-need_num])
yTest = sc_inverse_transform(scTestDataseY, yTest)
#print(yTrain)
print(yTest.shape)
###############################################################################
#进行预测
yPredictes = model.predict(x=xTest)
#print(yPredictes)
#使用 sc.inverse_transform()将归一化的数据转换回原始的数据,以便我们在图上进行查看
yPredictes = scTestDataseY.inverse_transform(X=yPredictes)
###############################################################################
#对比结果,绘制数据图表,红色是真实数据,蓝色是预测数据
plt.plot(yTest, color='red', label='Real Stock Price')
plt.plot(yPredictes, color='blue', label='Predicted Stock Price')
plt.title(label='ShangHai Stock Price Prediction')
plt.xlabel(xlabel='Time')
plt.ylabel(ylabel='ShangHai Stock Price')
plt.legend()
plt.show()