-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbuffer.py
190 lines (154 loc) · 6.34 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# =====================================
# @Time : 2020/6/10
# @Author : Yang Guan (Tsinghua Univ.)
# @FileName: buffer.py
# =====================================
import logging
import random
import numpy as np
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from utils.segment_tree import SumSegmentTree, MinSegmentTree
class ReplayBuffer(object):
def __init__(self, args, buffer_id):
"""Create Prioritized Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
"""
self.args = args
self.buffer_id = buffer_id
self._storage = []
self._maxsize = self.args.max_buffer_size
self._next_idx = 0
self.replay_starts = self.args.replay_starts
self.replay_batch_size = self.args.replay_batch_size
self.stats = {}
self.replay_times = 0
logger.info('Buffer initialized')
def get_stats(self):
self.stats.update(dict(storage=len(self._storage)))
return self.stats
def __len__(self):
return len(self._storage)
def add(self, obs_t, action, reward, obs_tp1, done, weight):
data = (obs_t, action, reward, obs_tp1, done)
if self._next_idx >= len(self._storage):
self._storage.append(data)
else:
self._storage[self._next_idx] = data
self._next_idx = (self._next_idx + 1) % self._maxsize
def _encode_sample(self, idxes):
obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], []
for i in idxes:
data = self._storage[i]
obs_t, action, reward, obs_tp1, done = data
obses_t.append(np.array(obs_t, copy=False))
actions.append(np.array(action, copy=False))
rewards.append(reward)
obses_tp1.append(np.array(obs_tp1, copy=False))
dones.append(done)
return np.array(obses_t), np.array(actions), np.array(rewards), \
np.array(obses_tp1), np.array(dones)
def sample_idxes(self, batch_size):
return np.array([random.randint(0, len(self._storage) - 1) for _ in range(batch_size)], dtype=np.int32)
def sample_with_idxes(self, idxes):
return list(self._encode_sample(idxes)) + [idxes,]
def sample(self, batch_size):
idxes = self.sample_idxes(batch_size)
return self.sample_with_idxes(idxes)
def add_batch(self, batch):
for trans in batch:
self.add(*trans, 0)
def replay(self):
if len(self._storage) < self.replay_starts:
return None
if self.buffer_id == 1 and self.replay_times % self.args.buffer_log_interval == 0:
logger.info('Buffer info: {}'.format(self.get_stats()))
self.replay_times += 1
return self.sample(self.replay_batch_size)
class PrioritizedReplayBuffer(ReplayBuffer):
def __init__(self, args, buffer_id):
"""Create Prioritized Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
alpha: float
how much prioritization is used
(0 - no prioritization, 1 - full prioritization)
beta: float
To what degree to use importance weights
(0 - no corrections, 1 - full correction)
See Also
--------
ReplayBuffer.__init__
"""
super(PrioritizedReplayBuffer, self).__init__(args, buffer_id)
assert self.args.alpha > 0
self._alpha = args.replay_alpha
self._beta = args.replay_beta
it_capacity = 1
while it_capacity < self.args.size:
it_capacity *= 2
self._it_sum = SumSegmentTree(it_capacity)
self._it_min = MinSegmentTree(it_capacity)
self._max_priority = 1.0
def add(self, obs_t, action, reward, obs_tp1, done, weight):
"""See ReplayBuffer.store_effect"""
idx = self._next_idx
super(PrioritizedReplayBuffer, self).add(obs_t, action, reward,
obs_tp1, done, weight)
if weight is None:
weight = self._max_priority
self._it_sum[idx] = weight ** self._alpha
self._it_min[idx] = weight ** self._alpha
def _sample_proportional(self, batch_size):
res = []
for _ in range(batch_size):
mass = random.random() * self._it_sum.sum(0, len(self._storage))
idx = self._it_sum.find_prefixsum_idx(mass)
res.append(idx)
return np.array(res, dtype=np.int32)
def sample_idxes(self, batch_size):
return self._sample_proportional(batch_size)
def sample_with_weights_and_idxes(self, idxes):
weights = []
p_min = self._it_min.min() / self._it_sum.sum()
max_weight = (p_min * len(self._storage)) ** (-self._beta)
for idx in idxes:
p_sample = self._it_sum[idx] / self._it_sum.sum()
weight = (p_sample * len(self._storage)) ** (-self._beta)
weights.append(weight / max_weight)
weights = np.array(weights)
encoded_sample = self._encode_sample(idxes)
return list(encoded_sample) + [weights, idxes]
def sample(self, batch_size):
idxes = self.sample_idxes(batch_size)
return self.sample_with_weights_and_idxes(idxes)
def update_priorities(self, idxes, priorities):
"""Update priorities of sampled transitions.
sets priority of transition at index idxes[i] in buffer
to priorities[i].
Parameters
----------
idxes: [int]
List of idxes of sampled transitions
priorities: [float]
List of updated priorities corresponding to
transitions at the sampled idxes denoted by
variable `idxes`.
"""
assert len(idxes) == len(priorities)
for idx, priority in zip(idxes, priorities):
assert priority > 0
assert 0 <= idx < len(self._storage)
delta = priority ** self._alpha - self._it_sum[idx]
self._it_sum[idx] = priority ** self._alpha
self._it_min[idx] = priority ** self._alpha
self._max_priority = max(self._max_priority, priority)