-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEuler_Graph_check.cpp
102 lines (86 loc) · 2.07 KB
/
Euler_Graph_check.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <bits/stdc++.h>
using namespace std;
class Graph
{
int V;
vector<int> *graph;
public:
Graph(int V)
{
this->V = V;
graph = new vector<int>[V];
}
void addEdge(int u, int v)
{
graph[u].push_back(v);
graph[v].push_back(u);
}
void dfs(int source, vector<bool> &visited)
{
visited[source] = true;
for (int i : graph[source])
if (!visited[i])
dfs(i, visited);
}
bool checkConnected()
{
vector<bool> visited(V + 1, false);
// checking if there is any edge in the graph or not.
// if there is 0 edge then the graph is disconnected. (Euler Graph Theory)
int source = -1;
for (int i = 0; i < V; i++)
{
if (graph[i].size() > 0)
{
source = i;
break;
}
}
// if there is no edge then returning true as it is Euler Graph.
if (source = -1)
return true;
dfs(source, visited);
// checking if there is any vertex left to be discovered:
for (int i = 0; i < V; i++)
{
// if we have edges in the multi-components
if (!visited[i] and graph[i].size() > 0)
return false;
}
return true;
}
void checkEuler()
{
if (!checkConnected())
{
cout << "Not an Eularian Graph!" << endl;
return;
}
int oddCount = 0;
for (int i = 0; i < V; i++)
{
if (graph[i].size() & 1)
oddCount += 1;
}
if (oddCount > 2)
cout << "Not an Eularian Graph!" << endl;
if (oddCount == 2)
cout << "Semi-Eularian Graph!" << endl;
else
cout << "Eularian Graph!" << endl;
}
};
int main()
{
int V = 5;
Graph g(V);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(0, 4);
g.addEdge(1, 3);
g.addEdge(2, 3);
g.addEdge(2, 4);
g.addEdge(0, 3);
g.checkEuler();
return 0;
}