-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrackMultipleObjects.py
154 lines (99 loc) · 4.39 KB
/
trackMultipleObjects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''
Created on Sep 9, 2017
@author: inayat
'''
# import the required packages
from imutils.video import FileVideoStream
#from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
import sys
from utils.fps2 import FPS2
from matplotlib import tight_bbox
if __name__ == '__main__':
# Initialize the argument parse which is used to parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", required=True,
help="path to input video file")
ap.add_argument("-t", "--type", required=True,
help="input from [0..5] for selection of type of tracker from ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN'] ")
args = vars(ap.parse_args())
print("[info] tracker selected is ", args["type"])
# a list of trackers type available in OpenCV3.2
#
trackerTypes = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
trackerType = trackerTypes[int(args["type"])]
# initialize multiple Tracker object with tracking algo
multipleTrackerOpenCV = cv2.MultiTracker(trackerType)
# Since the read method of the openCV cv2.VideoCapture
# is blocking IO operation
# Therefore I am going to use thread enable version of reading
# the video. It is implemented in imutil package (pyImagesearch.com)
# start and open a pointer to the file video stream thread
# and allow the buffer to start to fill
print("[info] starting to read a video file ...")
fvs = FileVideoStream(args["video"]).start()
time.sleep(1.0)
# read the first frame
frame = fvs.read()
#if not success:
# print("[info]: Failed to read the video")
# sys.exit(1)
#
init = False
bboxes = [] # contains bounding boxes around the objects to be tracked
# initialize various objects in the first frame of the video
while True:
# select the ROI around the object to be tracked
box = cv2.selectROI('tracking', frame, showCrossair=False, fromCenter=False)
print(box)
bboxes.append(box)
print("[info] print q to quit object selection and anyother key for next object selection")
k = cv2.waitKey(0) & 0xff
if(k== 113):
break
print("[info] selecting objects {}".format(bboxes))
# start the frame per second (FPS) counter
fps = FPS2().start()
# loop over the frames obtained from the video file stream
while fvs.more():
# grab each frame from the threaded video file stream,
# resize
# it, and convert it to grayscale (while still retaining 3
# channels)
frame = fvs.read()
#frame = imutils.resize(frame, width=450)
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#frame = np.dstack([frame, frame, frame])
# display the size of the queue on the frame
#cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()),
# (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# initialize the trackers only once
if not init:
success = multipleTrackerOpenCV.add(frame,bboxes)
init = True
success, boxes = multipleTrackerOpenCV.update(frame)
print("[info] no boxes {}".format(len(boxes)))
for box in boxes:
p1= (int(box[0]), int(box[1]))
p2 = (int(box[0] + box[2]), int(box[1] + box[3]))
cv2.rectangle(frame, p1, p2, (200, 0, 0))
fps.update()
cv2.putText(frame, "FPS: {:.2f}".format(fps.fps()),
(10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, trackerType + " Tracker", (20,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
# show the frame and update the FPS counter
cv2.imshow("Frame", frame)
k = cv2.waitKey(1) & 0xff
if k == 27:
break
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
fvs.stop()