-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
207 lines (171 loc) · 6.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import time
import click
import torch
import torch.utils.data
import pytorch_lightning as pl
from ngp import *
import utils
from datasets import *
import trimesh
import skimage
import PIL
import matplotlib.pyplot as plt
def train_sdf(input_path, batch_size, output_path=None, model_path=None):
num_freqs = 6
sdf_path = pathlib.Path(input_path)
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if sdf_path.suffix == ".obj":
if model_path is None:
train_dataset = OBJDataset(str(sdf_path), num_samples=2 ** 22, tsdf_min=-0.25, tsdf_max=0.25,
voxel_resolution=512)
val_dataset = OBJDataset(str(sdf_path), num_samples=2 ** 16, tsdf_min=-0.25, tsdf_max=0.25,
voxel_resolution=512)
elif sdf_path.suffix == ".sdf":
if model_path is None:
train_dataset = SDFDataset(str(sdf_path), tsdf_min=-0.25, tsdf_max=0.25)
val_dataset = SDFDataset(str(sdf_path), tsdf_min=-0.25, tsdf_max=0.25)
else:
raise ValueError(f"Unsupported dataset type {sdf_path.suffix}")
if model_path is None:
model = SDFNGPModel(pos_enc_freqs=num_freqs)
else:
model = SDFNGPModel.load_from_checkpoint(model_path)
model.to(dev)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=8,
pin_memory=True
)
if model_path is None:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True
)
trainer = pl.Trainer(
gpus=1,
logger=True,
callbacks=[
pl.callbacks.EarlyStopping(monitor="validation/loss", mode="min", patience=3),
pl.callbacks.ModelCheckpoint(monitor="validation/loss", mode="min"),
],
enable_checkpointing=True,
min_epochs=1,
max_epochs=20,
precision=32 if dev == torch.device("cpu") else 16
)
trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader)
model.to(dev)
out_path = output_path or sdf_path.parent / (sdf_path.stem + "_pred.ply")
predict_mesh(val_dataset, model, str(out_path))
def train_gigapixel(input_path, batch_size, output_path=None, model_path=None):
num_freqs = 6
img_path = pathlib.Path(input_path)
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if img_path.suffix == ".exr":
train_dataset = EXRDataset(str(img_path))
else:
train_dataset = ImageDataset(str(img_path))
if model_path is None:
model = GigapixelNGPModel(pos_enc_freqs=num_freqs)
else:
model = GigapixelNGPModel.load_from_checkpoint(model_path)
model.to(dev)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True
)
if model_path is None:
trainer = pl.Trainer(
gpus=1,
logger=True,
callbacks=[
pl.callbacks.EarlyStopping(monitor="training/loss", mode="min", patience=3),
pl.callbacks.ModelCheckpoint(monitor="training/loss", mode="min"),
],
enable_checkpointing=True,
min_epochs=1,
max_epochs=20,
precision=32 if dev == torch.device("cpu") else 16
)
trainer.fit(model, train_dataloaders=train_dataloader)
model.to(dev)
out_path = output_path or img_path.parent / (img_path.stem + "_pred.jpg")
predict_image(train_dataset, model, str(out_path), batch_size=batch_size)
def predict_mesh(dataset, model, filename):
preds = []
with torch.inference_mode():
model.eval()
t0 = time.monotonic()
for coord_slice_WD3 in dataset.voxel_coords_hwd3:
coord_slice_N3 = coord_slice_WD3.reshape(-1, coord_slice_WD3.shape[2]).to(model.device)
pred_slice_N1 = model(coord_slice_N3)
preds.append(pred_slice_N1.reshape(coord_slice_WD3.shape[:-1]).cpu())
sdf_pred_hwd = torch.stack(preds, dim=0).squeeze()
t1 = time.monotonic()
print(f"Predicted SDF in {t1 - t0} seconds")
mask = F.interpolate(
einops.rearrange(torch.from_numpy(
skimage.morphology.ball(sdf_pred_hwd.shape[0] // 2)),
"h w d -> 1 1 h w d"),
sdf_pred_hwd.shape,
mode="nearest",
).squeeze().bool().cpu().numpy()
verts, faces, norms, _ = skimage.measure.marching_cubes(
sdf_pred_hwd.numpy(),
allow_degenerate=False,
mask=mask,
level=0)
mesh = trimesh.Trimesh(vertices=verts, faces=faces, normals=norms)
trimesh.exchange.export.export_mesh(mesh, filename, "ply")
print(f"Exported mesh to {filename}")
def predict_image(dataset, model, filename, batch_size=4096):
pred_img = torch.zeros(dataset.rgb_hw3.shape, dtype=torch.float)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True
)
coords_multiplier = torch.Tensor([dataset.rgb_hw3.shape[0] - 1, dataset.rgb_hw3.shape[1] - 1]).unsqueeze(0)
with torch.inference_mode():
model.eval()
for batch in dataloader:
x, _ = batch
c = model(x.to(model.device))
i = torch.round(x * coords_multiplier).long().cpu()
pred_img[i[:, 0], i[:, 1]] = c.cpu()
pred_img = torch.clamp(pred_img, min=0.0, max=1.0)
PIL.Image.fromarray((pred_img.numpy() * 255.0).astype(np.uint8)).save(filename, quality=100)
print(f"PSNR: {(20 * np.log10(1.0)) - (10 * np.log10(F.mse_loss(dataset.rgb_hw3.cpu(), pred_img).item()))}")
@click.command()
@click.option("--input-data", type=click.Path(), required=True, help="Path to input data")
@click.option("--task", type=click.Choice(["sdf", "gigapixel"]), required=True, help="Task to perform")
@click.option("--batch-size", type=click.INT, default=4096, help="Batch size")
@click.option("--output-path", type=click.Path(), required=False, default=None,
help="Output path for generated artifacts")
@click.option("--model-path", type=click.Path(), required=False, default=None,
help="Path of pretrained model to run inference with")
def main(
input_data,
task,
batch_size,
output_path,
model_path,
):
if task == "gigapixel":
train_gigapixel(input_data, batch_size, output_path, model_path)
elif task == "sdf":
train_sdf(input_data, batch_size, output_path, model_path)
else:
raise ValueError(f"Unsupported task {task}")
if __name__ == "__main__":
main()