-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathngp.py
169 lines (145 loc) · 7.43 KB
/
ngp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchvision
import utils
from matplotlib import pyplot as plt
import tqdm
import numpy as np
import einops
class NeuralGraphicsPrimitiveModel(pl.LightningModule):
def __init__(self, mlp, dimension=2, levels=16, max_entries_per_level=2 ** 16, feature_dim=2, min_resolution=16,
max_resolution=16384, **kwargs):
super().__init__(**kwargs)
self.mlp = mlp
self.d = dimension
self.L = levels
self.T = max_entries_per_level
self.F = feature_dim
self.N_min = min_resolution
self.N_max = max_resolution
b = np.exp((np.log(self.N_max) - np.log(self.N_min)) / (self.L - 1))
N_l = torch.Tensor([np.floor(self.N_min * (b ** l)) for l in range(self.L)]).detach()
self.register_buffer("N_l", N_l)
self.create_hashmap_parameters()
self.ema = utils.ExponentialMovingAverage(self.parameters(), decay=0.95)
def create_hashmap_parameters(self) -> None:
feat_init_min = -10 ** -4
feat_init_max = 10 ** -4
shape = (self.L, self.T, self.F)
feats = ((feat_init_max - feat_init_min) * torch.rand(shape, device=self.device)) + feat_init_min
self.register_parameter("features", torch.nn.Parameter(feats))
def get_hypercube_vertices(self, low_coords_bld, high_coords_bld):
b, l, d = low_coords_bld.shape
coords_bl2d = torch.stack((low_coords_bld, high_coords_bld), dim=2)
indices_blDd = einops.repeat(torch.cartesian_prod(*([torch.arange(2, device=self.device)] * d)),
"v d -> b l v d",
b=b, l=l)
vertices_blDd = torch.gather(coords_bl2d, 2, indices_blDd)
return vertices_blDd
def interpolate(self, scaled_coordinates_bld, feats_blDf, vertices_blDd, smooth=False):
"""
:param scaled_coordinates_bld:
:param feats_blDf:
:param vertices_blDd:
:return:
"""
b, l, d = scaled_coordinates_bld.shape
# get cube side length, when the coordinates are scaled all voxels
# have side length one
side_lengths_bl1d = torch.ones((b, l, 1, d), device=self.device)
# n-linear interpolation can be taken as the vertex's value times the volume of the
# n-dimensional volume with corners defined by the *opposite* vertex and the point in the interior
residuals_blDd = torch.clamp(
side_lengths_bl1d - torch.abs(vertices_blDd - scaled_coordinates_bld.view(b, l, 1, d)),
min=0.0001,
max=0.9999
)
# the volume is obviously the reduction along that dimension via multiplication
weights_blD1 = einops.reduce(residuals_blDd,
"b l D d -> b l D 1",
"prod")
if smooth:
weights_blD1 = (weights_blD1 ** 2) * (3.0 - (2.0 * weights_blD1))
# multiply each vertex value by the weights and sum along the vertices
interpolated_feats_blf = einops.reduce(feats_blDf * weights_blD1,
"b l D f -> b l f",
"sum")
return interpolated_feats_blf
def get_interpolated_features(self, coords, smooth=False):
"""
:param x: b x d position vector in [0,1] for each dimension
:return: b x (L F) features to use as input to the network
"""
scaled_coords_bld = torch.einsum("bd,l->bld", coords, self.N_l)
if smooth:
# add half voxel size
scaled_coords_bld += 1.0 / (2.0 * einops.rearrange(self.N_l, "l -> 1 l 1"))
low_coords_bld = torch.floor(scaled_coords_bld).long()
# add a bit to make sure we round up
high_coords_bld = torch.ceil(scaled_coords_bld + (1.0 / (self.N_max + 1))).long()
vertices_blDd = self.get_hypercube_vertices(low_coords_bld, high_coords_bld)
b, l, D, d = vertices_blDd.shape
feat_indices_lN = einops.rearrange(utils.spatial_hash(vertices_blDd.view(b * l * D, d), self.T),
"(b l D) -> l (b D)", b=b, l=l, D=D)
l_indices = torch.arange(l, dtype=torch.long, device=self.device)
feats_blDf = einops.rearrange(self.features[l_indices[:, None], feat_indices_lN, :],
"l (b D) f -> b l D f", b=b, l=l, D=D)
interpolated_feats_blf = self.interpolate(scaled_coords_bld, feats_blDf, vertices_blDd, smooth=smooth)
return interpolated_feats_blf.flatten(start_dim=1)
def forward(self, x):
coords, eta = x[:, :self.d], x[:, self.d:]
interpolated_feats_bF = self.get_interpolated_features(coords, smooth=True)
final_feats_bF = torch.cat((interpolated_feats_bF, eta), dim=1)
return self.mlp(final_feats_bF)
def step(self, batch, batch_idx, phase):
raise NotImplementedError("Implement this for various methods!")
def training_step(self, train_batch, batch_idx):
return self.step(train_batch, batch_idx, "training")
def validation_step(self, val_batch, batch_idx):
return self.step(val_batch, batch_idx, "validation")
def configure_optimizers(self):
self.ema.to(self.device)
return torch.optim.AdamW(self.parameters(), betas=(0.9, 0.99), eps=10e-15, weight_decay=10e-6)
def on_before_zero_grad(self, *args, **kwargs):
self.ema.update(self.parameters())
class SDFNGPModel(NeuralGraphicsPrimitiveModel):
def __init__(self, pos_enc_freqs=6, coords_min=-1.0, coords_max=1.0):
mlp = utils.make_mlp(3 * 2 * pos_enc_freqs, 1, hidden_dim=128, hidden_layers=4)
super().__init__(mlp, dimension=3, feature_dim=2)
self.coords_min = coords_min
self.coords_max = coords_max
self.pos_enc_freqs = pos_enc_freqs
def forward(self, x):
# coords are between [coords_min, coords_max], scale to be between [0, 1]
x -= self.coords_min
x /= (self.coords_max - self.coords_min)
pos_enc_x = utils.pos_encoding(x, self.pos_enc_freqs, dim=1)
return super().forward(pos_enc_x)
def step(self, batch, batch_idx, phase):
x, d = batch
outputs = self(x)
loss = F.l1_loss(outputs.squeeze(), d.squeeze())
self.log(f"{phase}/loss", loss)
return loss
class GigapixelNGPModel(NeuralGraphicsPrimitiveModel):
def __init__(self, pos_enc_freqs=6, coords_min=0.0, coords_max=1.0):
mlp = utils.make_mlp(2 * 2 * pos_enc_freqs, 3, hidden_dim=64, hidden_layers=2,
output_nonlinearity=torch.nn.Sigmoid())
super().__init__(mlp, dimension=2, max_resolution=4096, max_entries_per_level=2**18, feature_dim=2)
self.coords_min = coords_min
self.coords_max = coords_max
self.pos_enc_freqs = pos_enc_freqs
def forward(self, x):
# coords are between [coords_min, coords_max], scale to be between [0, 1]
x -= self.coords_min
x /= (self.coords_max - self.coords_min)
pos_enc_x = utils.pos_encoding(x, self.pos_enc_freqs, dim=1)
return super().forward(pos_enc_x)
def step(self, batch, batch_idx, phase):
x, y = batch
outputs = self(x)
loss = F.mse_loss(outputs.squeeze(), y.squeeze())
self.log(f"{phase}/loss", loss)
self.log(f"{phase}/psnr", 20 * torch.log10(torch.Tensor([1.0]).to(self.device)) - 10 * torch.log10(loss))
return loss