forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models.py
325 lines (269 loc) · 11.5 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import argparse
import copy
import unittest
import math
import torch
from torch.autograd import Variable
import onmt
import onmt.io
import opts
from onmt.ModelConstructor import make_embeddings, \
make_encoder, make_decoder
from onmt.modules import ImageEncoder, AudioEncoder
parser = argparse.ArgumentParser(description='train.py')
opts.model_opts(parser)
opts.train_opts(parser)
# -data option is required, but not used in this test, so dummy.
opt = parser.parse_known_args(['-data', 'dummy'])[0]
class TestModel(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestModel, self).__init__(*args, **kwargs)
self.opt = opt
# Helper to generate a vocabulary
def get_vocab(self):
src = onmt.io.get_fields("text", 0, 0)["src"]
src.build_vocab([])
return src.vocab
def get_batch(self, source_l=3, bsize=1):
# len x batch x nfeat
test_src = Variable(torch.ones(source_l, bsize, 1)).long()
test_tgt = Variable(torch.ones(source_l, bsize, 1)).long()
test_length = torch.ones(bsize).fill_(source_l).long()
return test_src, test_tgt, test_length
def get_batch_image(self, tgt_l=3, bsize=1, h=15, w=17):
# batch x c x h x w
test_src = Variable(torch.ones(bsize, 3, h, w)).float()
test_tgt = Variable(torch.ones(tgt_l, bsize, 1)).long()
test_length = None
return test_src, test_tgt, test_length
def get_batch_audio(self, tgt_l=3, bsize=1, sample_rate=5500,
window_size=0.03, t=37):
# batch x 1 x nfft x t
nfft = int(math.floor((sample_rate * window_size) / 2) + 1)
test_src = Variable(torch.ones(bsize, 1, nfft, t)).float()
test_tgt = Variable(torch.ones(tgt_l, bsize, 1)).long()
test_length = None
return test_src, test_tgt, test_length
def embeddings_forward(self, opt, source_l=3, bsize=1):
'''
Tests if the embeddings works as expected
args:
opt: set of options
source_l: Length of generated input sentence
bsize: Batchsize of generated input
'''
word_dict = self.get_vocab()
feature_dicts = []
emb = make_embeddings(opt, word_dict, feature_dicts)
test_src, _, __ = self.get_batch(source_l=source_l,
bsize=bsize)
if opt.decoder_type == 'transformer':
input = torch.cat([test_src, test_src], 0)
res = emb(input)
compare_to = torch.zeros(source_l * 2, bsize,
opt.src_word_vec_size)
else:
res = emb(test_src)
compare_to = torch.zeros(source_l, bsize, opt.src_word_vec_size)
self.assertEqual(res.size(), compare_to.size())
def encoder_forward(self, opt, source_l=3, bsize=1):
'''
Tests if the encoder works as expected
args:
opt: set of options
source_l: Length of generated input sentence
bsize: Batchsize of generated input
'''
word_dict = self.get_vocab()
feature_dicts = []
embeddings = make_embeddings(opt, word_dict, feature_dicts)
enc = make_encoder(opt, embeddings)
test_src, test_tgt, test_length = self.get_batch(source_l=source_l,
bsize=bsize)
hidden_t, outputs = enc(test_src, test_length)
# Initialize vectors to compare size with
test_hid = torch.zeros(self.opt.enc_layers, bsize, opt.rnn_size)
test_out = torch.zeros(source_l, bsize, opt.rnn_size)
# Ensure correct sizes and types
self.assertEqual(test_hid.size(),
hidden_t[0].size(),
hidden_t[1].size())
self.assertEqual(test_out.size(), outputs.size())
self.assertEqual(type(outputs), torch.autograd.Variable)
self.assertEqual(type(outputs.data), torch.FloatTensor)
def nmtmodel_forward(self, opt, source_l=3, bsize=1):
"""
Creates a nmtmodel with a custom opt function.
Forwards a testbatch and checks output size.
Args:
opt: Namespace with options
source_l: length of input sequence
bsize: batchsize
"""
word_dict = self.get_vocab()
feature_dicts = []
embeddings = make_embeddings(opt, word_dict, feature_dicts)
enc = make_encoder(opt, embeddings)
embeddings = make_embeddings(opt, word_dict, feature_dicts,
for_encoder=False)
dec = make_decoder(opt, embeddings)
model = onmt.Models.NMTModel(enc, dec)
test_src, test_tgt, test_length = self.get_batch(source_l=source_l,
bsize=bsize)
outputs, attn, _ = model(test_src,
test_tgt,
test_length)
outputsize = torch.zeros(source_l - 1, bsize, opt.rnn_size)
# Make sure that output has the correct size and type
self.assertEqual(outputs.size(), outputsize.size())
self.assertEqual(type(outputs), torch.autograd.Variable)
self.assertEqual(type(outputs.data), torch.FloatTensor)
def imagemodel_forward(self, opt, tgt_l=2, bsize=1, h=15, w=17):
"""
Creates an image-to-text nmtmodel with a custom opt function.
Forwards a testbatch and checks output size.
Args:
opt: Namespace with options
source_l: length of input sequence
bsize: batchsize
"""
if opt.encoder_type == 'transformer' or opt.encoder_type == 'cnn':
return
word_dict = self.get_vocab()
feature_dicts = []
enc = ImageEncoder(opt.enc_layers,
opt.brnn,
opt.rnn_size,
opt.dropout)
embeddings = make_embeddings(opt, word_dict, feature_dicts,
for_encoder=False)
dec = make_decoder(opt, embeddings)
model = onmt.Models.NMTModel(enc, dec)
test_src, test_tgt, test_length = self.get_batch_image(
h=h, w=w,
bsize=bsize,
tgt_l=tgt_l)
outputs, attn, _ = model(test_src,
test_tgt,
test_length)
outputsize = torch.zeros(tgt_l - 1, bsize, opt.rnn_size)
# Make sure that output has the correct size and type
self.assertEqual(outputs.size(), outputsize.size())
self.assertEqual(type(outputs), torch.autograd.Variable)
self.assertEqual(type(outputs.data), torch.FloatTensor)
def audiomodel_forward(self, opt, tgt_l=2, bsize=1, t=37):
"""
Creates a speech-to-text nmtmodel with a custom opt function.
Forwards a testbatch and checks output size.
Args:
opt: Namespace with options
source_l: length of input sequence
bsize: batchsize
"""
if opt.encoder_type == 'transformer' or opt.encoder_type == 'cnn':
return
word_dict = self.get_vocab()
feature_dicts = []
enc = AudioEncoder(opt.enc_layers,
opt.brnn,
opt.rnn_size,
opt.dropout,
opt.sample_rate,
opt.window_size)
embeddings = make_embeddings(opt, word_dict, feature_dicts,
for_encoder=False)
dec = make_decoder(opt, embeddings)
model = onmt.Models.NMTModel(enc, dec)
test_src, test_tgt, test_length = self.get_batch_audio(
bsize=bsize,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
t=t, tgt_l=tgt_l)
outputs, attn, _ = model(test_src,
test_tgt,
test_length)
outputsize = torch.zeros(tgt_l - 1, bsize, opt.rnn_size)
# Make sure that output has the correct size and type
self.assertEqual(outputs.size(), outputsize.size())
self.assertEqual(type(outputs), torch.autograd.Variable)
self.assertEqual(type(outputs.data), torch.FloatTensor)
def _add_test(param_setting, methodname):
"""
Adds a Test to TestModel according to settings
Args:
param_setting: list of tuples of (param, setting)
methodname: name of the method that gets called
"""
def test_method(self):
if param_setting:
opt = copy.deepcopy(self.opt)
for param, setting in param_setting:
setattr(opt, param, setting)
else:
opt = self.opt
getattr(self, methodname)(opt)
if param_setting:
name = 'test_' + methodname + "_" + "_".join(
str(param_setting).split())
else:
name = 'test_' + methodname + '_standard'
setattr(TestModel, name, test_method)
test_method.__name__ = name
'''
TEST PARAMETERS
'''
test_embeddings = [[],
[('decoder_type', 'transformer')]
]
for p in test_embeddings:
_add_test(p, 'embeddings_forward')
tests_encoder = [[],
[('encoder_type', 'mean')],
# [('encoder_type', 'transformer'),
# ('word_vec_size', 16), ('rnn_size', 16)],
[]
]
for p in tests_encoder:
_add_test(p, 'encoder_forward')
tests_nmtmodel = [[('rnn_type', 'GRU')],
[('layers', 10)],
[('input_feed', 0)],
[('decoder_type', 'transformer'),
('encoder_type', 'transformer'),
('src_word_vec_size', 16),
('tgt_word_vec_size', 16),
('rnn_size', 16)],
# [('encoder_type', 'transformer'),
# ('word_vec_size', 16),
# ('rnn_size', 16)],
[('decoder_type', 'transformer'),
('encoder_type', 'transformer'),
('src_word_vec_size', 16),
('tgt_word_vec_size', 16),
('rnn_size', 16),
('position_encoding', True)],
[('coverage_attn', True)],
[('copy_attn', True)],
[('global_attention', 'mlp')],
[('context_gate', 'both')],
[('context_gate', 'target')],
[('context_gate', 'source')],
[('encoder_type', "brnn"),
('brnn_merge', 'sum')],
[('encoder_type', "brnn")],
[('decoder_type', 'cnn'),
('encoder_type', 'cnn')],
[],
]
if onmt.modules.check_sru_requirement():
""" Only do SRU test if requirment is safisfied. """
# SRU doesn't support input_feed.
tests_nmtmodel.append([('rnn_type', 'SRU'), ('input_feed', 0)])
for p in tests_nmtmodel:
_add_test(p, 'nmtmodel_forward')
for p in tests_nmtmodel:
_add_test(p, 'imagemodel_forward')
for p in tests_nmtmodel:
p.append(('sample_rate', 5500))
p.append(('window_size', 0.03))
_add_test(p, 'audiomodel_forward')