-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfit.py
200 lines (168 loc) · 5.93 KB
/
cfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
import logging
NUM_IN_FEATURES = 1
IN_FEATURE_SIZE = 2
HIDDEN_FEATURE_SIZE = 3
NUM_CLASSES = 11
NUM_POINTS = 1
MAX_OUTPUT = 0.4
class Conv3Block(nn.Module):
def __init__(self, in_channels, out_channels, dropout_rate):
super(Conv3Block, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn = nn.BatchNorm1d(out_channels)
self.activation = nn.LeakyReLU()
self.dropout = nn.Dropout(dropout_rate)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.activation(out)
out = self.dropout(out)
return out
class ResidualBlock(nn.Module):
def __init__(self, nfeatures, dropout_rate):
super(ResidualBlock, self).__init__()
self.conv_block = Conv3Block(nfeatures, nfeatures, dropout_rate)
self.conv = nn.Conv1d(nfeatures, nfeatures, kernel_size=3, stride=1, padding=1)
self.bn = nn.BatchNorm1d(nfeatures)
self.activation = nn.LeakyReLU()
self.dropout = nn.Dropout(dropout_rate)
def forward(self, x):
residual = x
out = self.conv_block(x)
out = self.conv(out)
out = self.bn(out)
out += residual
out = self.activation(out)
return out
class Estimator(nn.Module):
def __init__(self, args):
super(Estimator, self).__init__()
# Prepare features layers
self.args = args
self.feat_proj = nn.Linear(IN_FEATURE_SIZE, HIDDEN_FEATURE_SIZE)
self.feat_conv = Conv3Block(NUM_IN_FEATURES, args.nfeatures, args.dropout)
self.res_blocks = nn.ModuleList()
for n in range(args.nlayers):
self.res_blocks.append(ResidualBlock(args.nfeatures, args.dropout))
# Predict layers
self.fc = nn.Linear(args.nfeatures*HIDDEN_FEATURE_SIZE, NUM_POINTS*NUM_CLASSES)
self.loss = nn.CrossEntropyLoss()
def forward(self, x):
"""
PARAMS:
x [batch_size, NUM_IN_FEATURES, IN_FEATURE_SIZE]
"""
out = self.feat_proj(x) # [batch_size, NUM_IN_FEATURES, HIDDEN_FEATURE_SIZE]
out = self.feat_conv(out) # [batch_size, nfeatures, HIDDEN_FEATURE_SIZE]
for i in range(self.args.nlayers):
out = self.res_blocks[i](out) # [batch_size, nfeatures, HIDDEN_FEATURE_SIZE]
out = out.view(-1,self.args.nfeatures*HIDDEN_FEATURE_SIZE) # [batch_size, nfeatures*HIDDEN_FEATURE_SIZE]
out = self.fc(out) # [batch_size, npoints*nclasses]
out = out.view(-1, NUM_POINTS, NUM_CLASSES) # [batch_size, npoints, nclasses]
return out
def compute_loss(self, out, y):
return self.loss(out.view(-1,NUM_CLASSES), y.view(-1))
def load_data(data_path):
data = torch.load(data_path)
return data[0], data[1]
def make_batches(data_x, data_y, batch_size, is_shuffle=True):
assert data_x.shape[1] == NUM_IN_FEATURES
assert data_x.shape[2] == IN_FEATURE_SIZE
assert data_y.shape[1] == NUM_POINTS
assert data_x.shape[0] == data_y.shape[0]
total_size = data_x.shape[0]
if is_shuffle:
pick = np.random.permutation(total_size)
else:
pick = np.arange(total_size)
pick = pick.astype(np.int64)
pick = torch.from_numpy(pick)
idx = 0
while idx<total_size:
d = pick[idx:idx+batch_size]
yield (torch.index_select(data_x,0,d),torch.index_select(data_y,0,d))
idx+=batch_size
def statistic(out, y):
"""
out and y should have the same shape
"""
out = out.numpy().astype(np.float32)/(NUM_CLASSES-1)
y = y.numpy().astype(np.float32)/(NUM_CLASSES-1)
# absolute difference
diff = out - y
diff = np.abs(diff)
for abs_diff in [0.04, 0.08, 0.1]:
# In the view of every record
result = diff > abs_diff
temp = np.sum(result,1) >= 1
ra = 1. - 1.*np.sum(temp)/temp.size
# In the view of every point
pa = 1. - 1.*np.sum(result)/result.size
logging.info("Absolute difference within %.2f Record Accuracy %.6f Point Accuracy %.6f"%(abs_diff, ra, pa))
# relative difference
for relative_diff_rate in [0.1, 0.2]:
relative_diff = relative_diff_rate*y
# In the view of every record
result = diff > relative_diff
temp = np.sum(result,1) >= 1
ra = 1. - 1.*np.sum(temp)/temp.size
# In the view of every point
pa = 1. - 1.*np.sum(result)/result.size
logging.info("Relative difference within %.2f Record Accuracy %.6f Point Accuracy %.6f"%(relative_diff_rate, ra, pa))
def train(epoch, model, data, data_size, optimizer, args):
model.train()
train_loss = 0
for batch_idx, (X, y) in enumerate(data):
batch_size = y.size(0)
X = Variable(X) # [batch_size, NUM_IN_FEATURES, IN_FEATURE_SIZE]
y = Variable(y) # [batch_size, npoints]
if args.gpu:
X = X.cuda()
y = y.cuda()
optimizer.zero_grad()
out = model(X) # [batch_size, npoints, nclasses]
loss = model.compute_loss(out, y)
loss.backward()
loss = loss.data[0]
train_loss += loss*batch_size
optimizer.step()
if batch_idx % 10000==0:
logging.info("Batch [%d / %d] loss: %.6f"%(batch_idx, data_size//batch_size, loss))
train_loss /= data_size
logging.info("Epoch %d loss: %.6f"%(epoch, train_loss))
def eval(model, data, data_size, args):
model.eval()
test_loss = 0
pred_y = []
true_y = []
for batch_idx, (X, y) in enumerate(data):
batch_size = y.size(0)
X = Variable(X, volatile=True)
y = Variable(y, volatile=True) # [batch_size, npoints]
if args.gpu:
X = X.cuda()
y = y.cuda()
out = model(X) # [batch_size, npoints, nclasses]
loss = model.compute_loss(out, y)
test_loss += loss.data[0]*batch_size
# Get prediction
_, out = torch.topk(out,1)
out = out.squeeze(2)
# Fetch data
if args.gpu:
out_ = out.data.cpu()
y_ = y.data.cpu()
else:
out_ = out.data
y_ = y.data
pred_y.append(out_)
true_y.append(y_)
test_loss /= data_size
logging.info("Test loss: %.6f" % (test_loss))
pred_y = torch.cat(pred_y,0)
true_y = torch.cat(true_y,0)
return test_loss, pred_y, true_y