-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsobol.cpp
179 lines (149 loc) · 4.65 KB
/
sobol.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include "../include/tms-nets/sobol.hpp"
namespace tms
{
Sobol::Sobol(void) :
Niederreiter()
{}
Sobol::Sobol(BasicInt nbits,
BasicInt dim,
bool in_parallel) :
Niederreiter(nbits,
dim,
std::vector<GenNum>(dim, GenNum(nbits)),
0,
(in_parallel ? tms::gf2poly::generate_irrpolys_in_parallel : tms::gf2poly::generate_irrpolys)(dim, nbits),
&Sobol::check_init1,
(void *)0)
{
initialize_generating_numbers();
}
Sobol::Sobol(BasicInt const nbits,
std::vector<BasicInt> const °rees_of_irrpolys) :
Niederreiter(nbits,
static_cast<BasicInt>(degrees_of_irrpolys.size()),
std::vector<GenNum>(degrees_of_irrpolys.size(), GenNum(nbits)),
0,
gf2poly::generate_irrpolys_with_degrees(degrees_of_irrpolys, nbits),
&Sobol::check_init2,
(void *)°rees_of_irrpolys)
{
initialize_generating_numbers();
}
Sobol::Sobol(BasicInt const nbits,
std::initializer_list<BasicInt> const °rees_of_irrpolys) :
Sobol(nbits, std::vector<BasicInt>{degrees_of_irrpolys})
{}
Sobol::Sobol(BasicInt const nbits,
std::vector< std::vector<uintmax_t> > const &irrpolys_coeffs) :
Niederreiter(nbits,
static_cast<BasicInt>(irrpolys_coeffs.size()),
std::vector<GenNum>(irrpolys_coeffs.size(), GenNum(nbits)),
0,
std::vector<Polynomial>(),
&Sobol::check_init3,
(void *)&irrpolys_coeffs)
{
initialize_generating_numbers();
}
Sobol::Sobol(BasicInt const nbits,
std::initializer_list< std::vector<uintmax_t> > const &irrpolys_coeffs) :
Sobol(nbits, std::vector< std::vector<uintmax_t> >{irrpolys_coeffs})
{}
void
Sobol::initialize_generating_numbers(void)
{
std::vector<BasicInt> alpha(m_nbits + \
std::max_element(
m_irrpolys.begin(), \
m_irrpolys.end(), \
[](Polynomial const &lpoly, Polynomial const &rpoly) { return lpoly.degree() < rpoly.degree(); } \
)->degree() - 1);
for (BasicInt i = 0; i < m_dim; ++i)
{
BasicInt const e = static_cast<BasicInt>(m_irrpolys[i].degree());
BasicInt const r_nbits = m_nbits % e;
Polynomial poly_mu(tms::gf2poly::make_gf2poly({1}));
alpha.resize(m_nbits - 1 + e);
for (BasicInt j = 0; j < m_nbits; )
{
BasicInt rows_remaining_in_section = ( (j/e + 1)*e > m_nbits ) ? r_nbits : e;
poly_mu = poly_mu * m_irrpolys[i];
recseq::fill_vector_recursively(alpha, 1ULL << ((j/e + 1)*e - 1), poly_mu);
// Here we interpret the j-th digit of direction number g[i](k) as gamma[i](j,k) - an
// element of i-th generating matrix Gamma[i]
while ( rows_remaining_in_section != 0 )
{
for (BasicInt k = 0, r = e - 1 - (j % e);
k < m_nbits;
++k)
{
m_generating_numbers[i].set_bit(j, k, alpha[k + r]);
//m_generating_numbers[i][k] |= static_cast<GenNumInt>(alpha[k + r]) << (m_nbits - 1 - j);
}
++j;
--rows_remaining_in_section;
}
}
}
}
GenNum
Sobol::inversed_generating_numbers(BasicInt dim) const
{
GenNum dir_num(m_nbits);
Polynomial omega = gf2poly::make_gf2poly({0, 1});
Polynomial const &poly = m_irrpolys[dim];
auto exp_poly = [&](irrpoly::gfpoly const &poly, BasicInt degree) -> Polynomial {
Polynomial cur_poly = gf2poly::make_gf2poly({1});
while ( degree > 0 )
{
cur_poly = cur_poly * poly;
--degree;
}
return cur_poly;
};
Polynomial cur_poly = gf2poly::make_gf2poly({0, 1});
for (BasicInt i = 0; i < m_nbits; ++i)
{
cur_poly = exp_poly(omega, i % poly.degree())*exp_poly(poly, i/poly.degree());
for (BasicInt j = 0; j < cur_poly.value().size(); ++j)
{
dir_num[i] |= (cur_poly.value()[j]) << (m_nbits - 1 - j);
}
}
BasicInt const e = static_cast<BasicInt>(poly.degree());
// BasicInt q = 0;
// while ( q < (m_nbits - 1)/e )
// {
// for (BasicInt r = e - 1; r > 0; --r)
// {
// for (BasicInt ri = 0; ri < r; ++ri)
// {
// dir_num[q*e + r] ^= poly[e - r + ri]*dir_num[q*e + ri];
// }
// }
// ++q;
// }
//
// for (BasicInt r = (m_nbits - 1) % e; r > 0; --r)
// {
// for (BasicInt ri = 0; ri < r; ++ri)
// {
// dir_num[q*e + r] ^= poly[e - r + ri]*dir_num[q*e + ri];
// }
// }
int k = m_nbits - 1;
while ( k >= 0 )
{
int const r_max = (k % e) + 1;
for (int r = r_max - 1; r > 0; --r)
{
for (int ri = 0; ri < r; ++ri)
{
dir_num[k - r_max + 1 + r] ^= poly[e - r + ri]*dir_num[k - r_max + 1 + ri];
}
}
k -= r_max;
}
return dir_num;
}
};