-
Notifications
You must be signed in to change notification settings - Fork 5.4k
/
Copy pathbatched-static-nnet3.cc
397 lines (354 loc) · 16.7 KB
/
batched-static-nnet3.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// cudadecoder/batched-static-nnet3.cc
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Hugo Braun
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if HAVE_CUDA == 1
#include "cudadecoder/batched-static-nnet3.h"
#include "nnet3/nnet-utils.h"
namespace kaldi {
namespace cuda_decoder {
void BatchedStaticNnet3::ReadParametersFromModelAndConfig() {
input_frames_per_chunk_ = config_.compute_opts.frames_per_chunk;
int32 nnet_left_context, nnet_right_context;
nnet3::ComputeSimpleNnetContext(am_nnet_.GetNnet(), &nnet_left_context,
&nnet_right_context);
total_nnet_left_context_ =
nnet_left_context + config_.compute_opts.extra_left_context;
total_nnet_right_context_ =
nnet_right_context + config_.compute_opts.extra_right_context;
total_nnet_context_ = total_nnet_left_context_ + total_nnet_right_context_;
subsampling_factor_ = config_.compute_opts.frame_subsampling_factor,
input_frames_per_chunk_ = config_.compute_opts.frames_per_chunk;
input_frames_per_chunk_with_context_ = input_frames_per_chunk_ +
total_nnet_left_context_ +
total_nnet_right_context_;
output_frames_per_chunk_ =
(subsampling_factor_ - 1 + input_frames_per_chunk_) / subsampling_factor_;
KALDI_ASSERT(output_frames_per_chunk_ > 0);
input_dim_ = am_nnet_.InputDim();
if (has_ivector_) ivector_dim_ = am_nnet_.IvectorDim();
}
void BatchedStaticNnet3::PresetKernelParams() {
// context_switch_kernel_params_.d_all_new_features; <- To be set when
// called
context_switch_kernel_params_.d_batch_slot_assignement =
d_batch_slot_assignement_;
context_switch_kernel_params_.d_all_context_frames =
d_all_context_frames_.Data();
context_switch_kernel_params_.d_all_context_frames_frame_stride =
d_all_context_frames_.Stride();
context_switch_kernel_params_.d_all_context_frames_channel_stride =
d_all_context_frames_.Stride() * total_nnet_context_;
// context_switch_kernel_params_.d_batch_with_context = <- To be set
// when called
// d_batch_with_context_.Data();
// context_switch_kernel_params_.batch_size; <- To be set when called
// context_switch_kernel_params_.d_all_new_features_stride = <- To be
// set when called
context_switch_kernel_params_.input_dim = input_dim_;
context_switch_kernel_params_.ivector_dim = ivector_dim_;
context_switch_kernel_params_.total_nnet_context = total_nnet_context_;
context_switch_kernel_params_.total_nnet_left_context =
total_nnet_left_context_;
context_switch_kernel_params_.total_nnet_right_context =
total_nnet_right_context_;
context_switch_kernel_params_.input_frames_per_chunk_with_context =
input_frames_per_chunk_with_context_;
}
void BatchedStaticNnet3::Allocate() {
cudaEventCreate(&batch_slot_assignement_copy_evt_, cudaEventDisableTiming);
d_all_context_frames_.Resize(nchannels_ * total_nnet_context_, input_dim_);
d_batch_with_context_.Resize(
max_batch_size_ * input_frames_per_chunk_with_context_, input_dim_);
if (has_ivector_) d_batch_ivectors_.Resize(max_batch_size_, ivector_dim_);
cudaMalloc(&d_batch_slot_assignement_,
max_batch_size_ * sizeof(*d_batch_slot_assignement_));
cudaMallocHost(&h_batch_slot_assignement_,
max_batch_size_ * sizeof(*h_batch_slot_assignement_));
channel_n_frames_in_context_.resize(nchannels_, -1);
st_ = cudaStreamPerThread;
PresetKernelParams();
}
void BatchedStaticNnet3::Deallocate() {
CU_SAFE_CALL(cudaFreeHost(h_batch_slot_assignement_));
CU_SAFE_CALL(cudaFree(d_batch_slot_assignement_));
CU_SAFE_CALL(cudaEventDestroy(batch_slot_assignement_copy_evt_));
}
void BatchedStaticNnet3::CompileNnet3() {
SetComputationRequest();
config_.compute_opts.compiler_config.cache_capacity +=
max_batch_size_ * input_frames_per_chunk_;
compiler_.reset(new nnet3::CachingOptimizingCompiler(
am_nnet_.GetNnet(), config_.compute_opts.compiler_config));
computation_ = compiler_->Compile(request_);
}
void BatchedStaticNnet3::SetComputationRequest() {
request_.need_model_derivative = false;
request_.store_component_stats = false;
request_.inputs.reserve(2);
int32 num_input_frames = input_frames_per_chunk_ + total_nnet_left_context_ +
total_nnet_right_context_;
int32 first_input_t = 0 - total_nnet_left_context_;
int32 num_output_frames = output_frames_per_chunk_;
int32 output_t_stride = subsampling_factor_;
std::vector<nnet3::Index> input_indexes, ivector_indexes, output_indexes;
input_indexes.reserve(nnet3_batch_size_ * num_input_frames);
output_indexes.reserve(nnet3_batch_size_ * num_output_frames);
if (has_ivector_) ivector_indexes.reserve(nnet3_batch_size_);
for (int32 n = 0; n < nnet3_batch_size_; n++) {
for (int32 t = first_input_t; t < first_input_t + num_input_frames; t++) {
input_indexes.push_back(nnet3::Index(n, t, 0));
}
if (config_.has_ivector) ivector_indexes.push_back(nnet3::Index(n, 0, 0));
for (int32 t = 0; t < num_output_frames; t++)
output_indexes.push_back(nnet3::Index(n, t * output_t_stride, 0));
}
request_.inputs.push_back(nnet3::IoSpecification("input", input_indexes));
if (has_ivector_)
request_.inputs.push_back(
nnet3::IoSpecification("ivector", ivector_indexes));
request_.outputs.push_back(nnet3::IoSpecification("output", output_indexes));
}
void BatchedStaticNnet3::BatchContextSwitch(
const std::vector<int> &channels,
const std::vector<BaseFloat *> &d_features, const int features_frame_stride,
const std::vector<BaseFloat *> &d_ivectors,
const std::vector<int> &n_input_frames_valid, bool flush_eos_context,
std::vector<int> *n_output_frames_valid) {
int batch_size = channels.size();
// AcceptInput destroys input, resizing
d_batch_with_context_.Resize(
max_batch_size_ * input_frames_per_chunk_with_context_, input_dim_);
if (has_ivector_) d_batch_ivectors_.Resize(max_batch_size_, ivector_dim_);
n_output_frames_valid->resize(batch_size);
cudaEventSynchronize(
batch_slot_assignement_copy_evt_); // reusing same pinned memory
for (int i = 0; i < channels.size(); ++i) {
int channel = channels[i];
int nframes_in_context = channel_n_frames_in_context_[channel];
int ninput_frames = n_input_frames_valid[i];
KALDI_ASSERT(ninput_frames <= input_frames_per_chunk_);
h_batch_slot_assignement_[i].d_features = d_features[i];
h_batch_slot_assignement_[i].d_ivectors =
has_ivector_ ? d_ivectors[i] : NULL;
h_batch_slot_assignement_[i].ichannel = channel;
h_batch_slot_assignement_[i].n_frames_already_in_context =
nframes_in_context;
h_batch_slot_assignement_[i].n_new_frames = ninput_frames;
// Left context will be generated as necessary (copying first
// frame) However we must have a full right context to start
// decoding frames
KALDI_ASSERT(!flush_eos_context || ninput_frames == 0);
int nframes_in_batch = ninput_frames;
if (nframes_in_context == 0)
nframes_in_batch += total_nnet_left_context_; // using frame0 as left
// context
else
nframes_in_batch += nframes_in_context;
if (flush_eos_context)
nframes_in_batch += total_nnet_right_context_; // using last frame as
// right context
KALDI_ASSERT(
"Please set --frames-per-chunk at least as large as the neural net "
"right context" &&
input_frames_per_chunk_ >= total_nnet_right_context_);
channel_n_frames_in_context_[channel] =
std::min(nframes_in_batch, total_nnet_context_);
// Computing number of output frames
int total_nframes_minus_context =
std::max(0, nframes_in_batch - total_nnet_context_);
int total_output_nframes =
(total_nframes_minus_context + subsampling_factor_ - 1) /
subsampling_factor_;
(*n_output_frames_valid)[i] = total_output_nframes;
}
context_switch_kernel_params_.batch_size = batch_size;
context_switch_kernel_params_.d_features_frame_stride = features_frame_stride;
context_switch_kernel_params_.d_batch_with_context =
d_batch_with_context_.Data();
context_switch_kernel_params_.d_batch_with_context_frame_stride =
d_batch_with_context_.Stride();
context_switch_kernel_params_.d_batch_ivectors =
has_ivector_ ? d_batch_ivectors_.Data() : NULL;
context_switch_kernel_params_.d_batch_ivectors_stride =
has_ivector_ ? d_batch_ivectors_.Stride() : 0;
context_switch_kernel_params_.d_batch_with_context_batch_stride =
d_batch_with_context_.Stride() * input_frames_per_chunk_with_context_;
cudaMemcpyAsync(d_batch_slot_assignement_, h_batch_slot_assignement_,
batch_size * sizeof(*d_batch_slot_assignement_),
cudaMemcpyHostToDevice, st_);
cudaEventRecord(batch_slot_assignement_copy_evt_, st_);
dim3 grid = {1,
static_cast<unsigned int>(input_frames_per_chunk_with_context_),
static_cast<unsigned int>(batch_size)};
dim3 block = {
64, 1,
1}; // Expecting chunks in the order of magnitude of 64 frames. It will
// still work with any numbers of frames per chunk, this only impacts
// performance. This kernel is not a bottleneck anyway
if (flush_eos_context) {
BuildBatchWithContextKernelContextFlush(grid, block, st_,
context_switch_kernel_params_);
} else {
BuildBatchWithContextKernel(grid, block, st_,
context_switch_kernel_params_);
SaveContextFromBatchKernel(grid, block, st_, context_switch_kernel_params_);
}
}
void BatchedStaticNnet3::RunNnet3(CuMatrix<BaseFloat> *d_all_log_posteriors,
int batch_size) {
for (int off = 0; off < batch_size; off += nnet3_batch_size_) {
// Nnet3 destroys input, resizing
d_nnet3_input_.Resize(
nnet3_batch_size_ * input_frames_per_chunk_with_context_, input_dim_);
if (has_ivector_) d_nnet3_ivectors_.Resize(nnet3_batch_size_, ivector_dim_);
int minibatch_size = std::min(nnet3_batch_size_, batch_size - off);
{
// Copy minibatch from batch : mfcc
int frames_per_minibatch =
minibatch_size * input_frames_per_chunk_with_context_;
CuSubMatrix<BaseFloat> dst =
d_nnet3_input_.RowRange(0, frames_per_minibatch);
CuSubMatrix<BaseFloat> src = d_batch_with_context_.RowRange(
off * input_frames_per_chunk_with_context_, frames_per_minibatch);
dst.CopyFromMat(src);
}
if (has_ivector_) {
// Copy minibatch from batch : ivectors
CuSubMatrix<BaseFloat> dst =
d_nnet3_ivectors_.RowRange(0, minibatch_size);
CuSubMatrix<BaseFloat> src =
d_batch_ivectors_.RowRange(off, minibatch_size);
dst.CopyFromMat(src);
}
// Using pre-compiled computation_
nnet3::NnetComputer computer(config_.compute_opts.compute_config,
*computation_, am_nnet_.GetNnet(), NULL);
computer.AcceptInput("input", &d_nnet3_input_);
if (has_ivector_) computer.AcceptInput("ivector", &d_nnet3_ivectors_);
computer.Run();
d_nnet3_output_ = computer.GetOutput("output");
{
int output_rows_per_minibatch = minibatch_size * output_frames_per_chunk_;
// Copy nnet3 minibatch output to batch
CuSubMatrix<BaseFloat> src =
d_nnet3_output_.RowRange(0, output_rows_per_minibatch);
CuSubMatrix<BaseFloat> dst = d_all_log_posteriors->RowRange(
off * output_frames_per_chunk_, output_rows_per_minibatch);
dst.CopyFromMat(src);
}
}
// Postprocessing of the loglikehoods
if (log_priors_.Dim() != 0)
d_all_log_posteriors->AddVecToRows(-1.0, log_priors_);
if (config_.compute_opts.acoustic_scale != 1.0f)
d_all_log_posteriors->Scale(config_.compute_opts.acoustic_scale);
}
void BatchedStaticNnet3::RunBatch(
const std::vector<int> &channels,
const std::vector<BaseFloat *> &d_features, const int features_stride,
const std::vector<BaseFloat *> &d_ivectors,
const std::vector<int> &n_input_frames_valid,
const std::vector<bool> &is_first_chunk,
const std::vector<bool> &is_last_chunk,
CuMatrix<BaseFloat> *d_all_log_posteriors,
std::vector<std::vector<std::pair<int, const BaseFloat *>>>
*all_frames_log_posteriors_ptrs) {
// Using >= to avoid having to recompute d_features
// In some cases the ptrs in d_features and d_ivectors are always the same,
// but the number of active channels vary
KALDI_ASSERT(d_features.size() >= channels.size());
KALDI_ASSERT(is_last_chunk.size() >= channels.size());
KALDI_ASSERT(is_first_chunk.size() >= channels.size());
if (has_ivector_) {
KALDI_ASSERT(d_ivectors.size() >= channels.size());
}
// Initializing the new channels
for (size_t i = 0; i < is_first_chunk.size(); ++i) {
if (is_first_chunk[i]) InitChannel(channels[i]);
}
all_frames_log_posteriors_ptrs
->clear(); // will start setting output frames now
//
// Step1: Processing chunks in d_features
//
// Building a continuous execution batch made of the current assignements,
// while adding left and right context to the chunks
BatchContextSwitch(channels, d_features, features_stride, d_ivectors,
n_input_frames_valid, false, &n_output_frames_valid_);
// Running this batch
RunNnet3(d_all_log_posteriors, channels.size());
// Building the list of pointers to output frames. Will be used by the decoder
FormatOutputPtrs(channels, d_all_log_posteriors,
all_frames_log_posteriors_ptrs, n_output_frames_valid_);
//
// Step2: Flushing context for chunks with is_last_chunk set
//
eos_channels_.clear();
d_eos_features_.clear();
d_eos_ivectors_.clear();
eos_n_input_frames_valid_.clear();
eos_n_output_frames_offset_.clear();
for (int i = 0; i < channels.size(); ++i) {
if (!is_last_chunk[i]) continue;
eos_channels_.push_back(channels[i]);
d_eos_features_.push_back(NULL); // the context will serve as features
if (has_ivector_) d_eos_ivectors_.push_back(d_ivectors[i]);
eos_n_input_frames_valid_.push_back(0);
eos_n_output_frames_offset_.push_back(
n_output_frames_valid_[i]); // append to previously generated frames
// (in step1)
}
if (!eos_channels_.empty()) {
BatchContextSwitch(eos_channels_, d_eos_features_, 0, d_eos_ivectors_,
eos_n_input_frames_valid_, /* flush context */ true,
&eos_n_output_frames_valid_);
d_all_eos_log_posteriors_.Resize(d_all_log_posteriors->NumRows(),
d_all_log_posteriors->NumCols());
RunNnet3(&d_all_eos_log_posteriors_, eos_channels_.size());
FormatOutputPtrs(eos_channels_, &d_all_eos_log_posteriors_,
all_frames_log_posteriors_ptrs, eos_n_output_frames_valid_,
&eos_n_output_frames_offset_);
}
}
void BatchedStaticNnet3::FormatOutputPtrs(
const std::vector<int> &channels, CuMatrix<BaseFloat> *d_all_log_posteriors,
std::vector<std::vector<std::pair<int, const BaseFloat *>>>
*all_frames_log_posteriors_ptrs,
const std::vector<int> &n_output_frames_valid,
const std::vector<int> *n_output_frames_valid_offset) {
// Build the list of pointers to output frames. Will be used by the decoder
KALDI_ASSERT(channels.size() == n_output_frames_valid.size());
for (int i = 0; i < channels.size(); ++i) {
int ichannel = channels[i];
int offset =
(n_output_frames_valid_offset) ? (*n_output_frames_valid_offset)[i] : 0;
int total_output_nframes = offset + n_output_frames_valid[i];
if (all_frames_log_posteriors_ptrs->size() < total_output_nframes)
all_frames_log_posteriors_ptrs->resize(total_output_nframes);
for (int iframe = offset; iframe < total_output_nframes; ++iframe) {
std::vector<std::pair<int, const BaseFloat *>> &this_frame =
(*all_frames_log_posteriors_ptrs)[iframe];
int local_iframe = iframe - offset;
CuSubVector<BaseFloat> out = d_all_log_posteriors->Row(
i * output_frames_per_chunk_ + local_iframe);
BaseFloat *frame = out.Data();
this_frame.push_back({ichannel, frame});
}
}
}
} // namespace cuda_decoder
} // namespace kaldi
#endif // HAVE_CUDA