This repository was archived by the owner on Mar 13, 2021. It is now read-only.
forked from yeephycho/tensorflow-face-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_batch_api_video.py
138 lines (113 loc) · 3.97 KB
/
inference_batch_api_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/python
# -*- coding: utf-8 -*-
# pylint: disable=C0103
# pylint: disable=E1101
import requests
import json
import sys
import time
import numpy as np
import cv2
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils_color as vis_util
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = './protos/face_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
cap = cv2.VideoCapture("./media/test.mp4")
X_RES = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
Y_RES = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(
"./media/test_out.avi",
0,
25.0,
(X_RES, Y_RES),
)
def image_preprocess(img, expand=False):
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if expand:
image_np = np.expand_dims(image_np, axis=0)
return image_np
BATCH_SIZE = 8
MAX_FRAMES = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# batching by BATCH_SIZE
for frame in range(0, MAX_FRAMES, BATCH_SIZE):
frames = []
for i in range(BATCH_SIZE):
ret, image = cap.read()
if ret == 0:
break
frames.append(image)
# Actual detection.
request_frames = [image_preprocess(im).tolist() for im in frames]
#request_frames = np.array(frames).reshape((BATCH_SIZE, Y_RES, X_RES, 3)).tolist()
start_time = time.time()
response = requests.post(
'http://{}:18501/v1/models/face:predict'.format('127.0.0.1'),
data=json.dumps({
'instances': request_frames,
}),
)
response.raise_for_status()
preds = response.json()['predictions']
#(boxes, scores, classes, num_detections) = sess.run(
# [boxes, scores, classes, num_detections],
# feed_dict={image_tensor: image_np_expanded})
elapsed_time = time.time() - start_time
print('batched inference time cost: {}'.format(elapsed_time))
#print(boxes.shape, boxes)
#print(scores.shape,scores)
#print(classes.shape,classes)
#print(num_detections)
# Visualization of the results of a detection.
for i, pred in enumerate(preds):
vis_util.visualize_boxes_and_labels_on_image_array(
# image_np,
frames[i],
np.squeeze(pred['boxes']),
np.squeeze(pred['classes']).astype(np.int32),
np.squeeze(pred['scores']),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
out.write(frames[i])
# now the leftovers for max_frames % BATCH_SIZE
for frame in range(MAX_FRAMES - (MAX_FRAMES % BATCH_SIZE), MAX_FRAMES):
ret, image = cap.read()
if ret == 0:
break
if out is None:
[h, w] = image.shape[:2]
out = cv2.VideoWriter("./media/test_out.avi", 0, 25.0, (w, h))
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
start_time = time.time()
response = requests.post(
'http://{}:18501/v1/models/face:predict'.format('127.0.0.1'),
data=json.dumps({
'instances': image_np_expanded.tolist(),
}),
)
response.raise_for_status()
pred = response.json()['predictions'][0]
elapsed_time = time.time() - start_time
print('inference time cost: {}'.format(elapsed_time))
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(pred['boxes']),
np.squeeze(pred['classes']).astype(np.int32),
np.squeeze(pred['scores']),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
out.write(image)
cap.release()
out.release()