-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
112 lines (93 loc) · 4.86 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import igraph as ig
from tqdm import tqdm
from stopwatch import Stopwatch
from collections import Counter
from hedonic import Game
from utils import generate_graph, get_ground_truth, get_initial_membership, read_txt_gz_to_igraph, read_pickle
stopwatch = Stopwatch() # create Stopwatch instance
# Initialize counters and duration sums
counts = {'hedonic_queue': 0, 'hedonic_traversal': 0, 'leiden': 0, 'leiden_hedonic': 0}
durations = {'hedonic_queue': 0, 'hedonic_traversal': 0, 'leiden': 0, 'leiden_hedonic': 0}
if (real_data := True):
# file_path = '/Users/lucas/Databases/Hedonic/Networks/DBLP/raw/com-dblp.ungraph.txt.gz'
# g = Game(read_txt_gz_to_igraph(file_path))
# g.vs["label"] = list(range(g.vcount()))
# g.delete_vertices(g.vs.select(_degree_eq=0))
file_path = '/Users/lucas/Databases/Hedonic/Networks/DBLP/pkl/com-dblp.ungraph.pkl'
communities_path = '/Users/lucas/Databases/Hedonic/Networks/DBLP/pkl/com-dblp.top5000.cmty.pkl'
g = read_pickle(file_path)
ground_truth = read_pickle(communities_path)
density = g.density()
print(g.summary())
for community in ground_truth[:11]:
# initial_membership = [0 if np.random.random() < 0.5 else 1 for _ in range(g.vcount())]
print(g.vcount(), len(community))
subset = {j for i in community for j in g.neighbors(i)}.union(set(community))
for i in subset:
g.vs[i]["label"] = i
new_g = g.subgraph(subset)
initial_membership = np.zeros(len(subset), dtype=int)
for i in community:
index = new_g.vs.find(label=i).index
initial_membership[index] = 1
print(initial_membership)
stopwatch.reset()
stopwatch.start()
p3 = new_g.community_leiden(resolution=density, n_iterations=-1, initial_membership=initial_membership, can_create_new_clusters=False)
stopwatch.stop()
new_g.initialize_game(p3.membership)
counts['leiden'] += new_g.in_equibrium(density)
durations['leiden'] += stopwatch.duration
print('community_leiden:', stopwatch.duration, new_g.in_equibrium(density), ig.compare_communities(p3, initial_membership, method="rand"))
stopwatch.reset()
stopwatch.start()
p4 = new_g.community_leiden(resolution=density, n_iterations=-1, only_first_phase=True, initial_membership=initial_membership, can_create_new_clusters=False)
new_g.initialize_game(p4.membership)
stopwatch.stop()
counts['leiden_hedonic'] += new_g.in_equibrium(density)
durations['leiden_hedonic'] += stopwatch.duration
print('community_leiden_hedonic:', stopwatch.duration, new_g.in_equibrium(density), ig.compare_communities(p4, initial_membership, method="rand"))
if (synthetic := False):
for seed in tqdm(range(100)):
# seed=42
n_communities = 5
community_size = 1000
g = generate_graph(n_communities, community_size, 0.05, 0.4, seed)
gt = get_ground_truth(n_communities, community_size, g)
density = g.density()
# stopwatch.reset()
# stopwatch.start()
# p1 = g.community_hedonic_queue()
# stopwatch.stop()
# counts['hedonic_queue'] += g.in_equibrium(density)
# durations['hedonic_queue'] += stopwatch.duration
# # print('community_hedonic:', stopwatch.duration, g.in_equibrium(density), ig.compare_communities(p1, gt, method="rand"))
# stopwatch.reset()
# stopwatch.start()
# p2 = g.community_hedonic_traversal()
# stopwatch.stop()
# counts['hedonic_traversal'] += g.in_equibrium(density)
# durations['hedonic_traversal'] += stopwatch.duration
# print('community_hedonic_traversal:', stopwatch.duration, g.in_equibrium(density), ig.compare_communities(p2, gt, method="rand"))
stopwatch.reset()
stopwatch.start()
p3 = g.community_leiden(resolution=density, n_iterations=-1)
stopwatch.stop()
g.initialize_game(p3.membership)
counts['leiden'] += g.in_equibrium(density)
durations['leiden'] += stopwatch.duration
# print('community_leiden:', stopwatch.duration, g.in_equibrium(density), ig.compare_communities(p3, gt, method="rand"))
stopwatch = Stopwatch() # create Stopwatch instance
stopwatch.start()
p4 = g.community_leiden(resolution=density, n_iterations=-1, hedonic=True)
g.initialize_game(p4.membership)
stopwatch.stop()
counts['leiden_hedonic'] += g.in_equibrium(density)
durations['leiden_hedonic'] += stopwatch.duration
# print('community_leiden_hedonic:', stopwatch.duration, g.in_equibrium(density), ig.compare_communities(p4, gt, method="rand"))
# print('\n'*3)
# Print final counts and mean durations
print('Final Counts:', counts)
print('Mean Durations:', {key: durations[key] / 100 for key in durations})
print('\n'*3)