-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrc.py
138 lines (114 loc) · 3.73 KB
/
src.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import matplotlib.pyplot as plt
from operator import add
# Reaction rates
#k1 = np.random.uniform(0, 2)
#k2 = np.random.uniform(0, 2)
#k3 = np.random.uniform(0, 2)
k1 = 1.0
k2 = 1.0
k3 = 1.0
k4 = 1.0
# Initial conditions
#A_conc_0 = np.random.uniform(0, 1)
#B_conc_0 = np.random.uniform(0, 1)
#C_conc_0 = np.random.uniform(0, 1)
#D_conc_0 = np.random.uniform(0, 1)
A_conc_0 = 1.0
B_conc_0 = 1.0
C_conc_0 = 1.0
D_conc_0 = 1.0
# Storing initial concentrations
concentrations_0 = [A_conc_0, B_conc_0, C_conc_0, D_conc_0]
# Time
time = list(range(0, 15))
# Estimate the step size
N = 10.0
#h = (max(time) - min(time))/N
h = 1/N
# Diff. equations for concentrations
def dAdt(conc, k1, k2, k3, k4):
concentration = -k1 * conc[0] + (-1 * k2) * conc[0] * conc[2]
return concentration
def dBdt(conc, k1, k2, k3, k4):
concentration = k2 * conc[0] * conc[2] - k4 * conc[1]
return concentration
def dCdt(conc, k1, k2, k3, k4):
concentration = -k2 * conc[0] * conc[2] + k3 * conc[3]
return concentration
def dDdt(conc, k1, k2, k3, k4):
concentration = k1 * conc[0] - k3 * conc[3] + k4 * conc[1]
return concentration
# Adapting the RK4 function
def RK4(h, function, concentration, kfun1, kfun2, kfun3, kfun4):
k1 = h * function(concentration, kfun1, kfun2, kfun3, kfun4)
k2 = h * function([x + 0.5 * k1 for x in concentration], kfun1, kfun2, kfun3, kfun4)
k3 = h * function([x + 0.5 * k2 for x in concentration], kfun1, kfun2, kfun3, kfun4)
k4 = h * function([x + k3 for x in concentration], kfun1, kfun2, kfun3, kfun4)
k = 1/6 * (k1 + 2 * k2 + 2 * k3 + k4)
return k
conc = []
# First reaction, predicted initial concentrations
concA = concentrations_0[0]
concB = concentrations_0[1]
concC = concentrations_0[2]
concD = concentrations_0[3]
# Concentration calculation for each time point
# The resulting change is added to the concentration
for i in range(1, len(time)):
# Values prev_A, prev_B of the previous iteration
prev_A = concA
prev_B = concB
prev_C = concC
prev_D = concD
concentration = [prev_A, prev_B, prev_C, prev_D]
change = RK4(h, dAdt, concentration, k1, k2, k3, k4)
concA += change
change = RK4(h, dBdt, concentration, k1, k2, k3, k4)
concB += change
change = RK4(h, dCdt, concentration, k1, k2, k3, k4)
concC += change
change = RK4(h, dDdt, concentration, k1, k2, k3, k4)
concD += change
# Preservation of concentrations obtained
conc.append([concA, concB, concC, concD])
# Insert initial concentrations forward
conc.insert(0, concentrations_0)
# Decomposition of concentrations for imaging
concA = []
concB = []
concC = []
concD = []
for i in conc:
concA.append(i[0])
concB.append(i[1])
concC.append(i[2])
concD.append(i[3])
print("k1: ", k1, " A + B -> D")
print("k2: ", k2, " A + C -> B")
print("k3: ", k3, " D -> C")
print("k4: ", k4, " B -> D")
print("Time parameter: ", time)
print("Step parameter: ", h)
concA = np.array(concA)
concB = np.array(concB)
concC = np.array(concC)
concD = np.array(concD)
concA[concA<0] = 0
concB[concB<0] = 0
concC[concC<0] = 0
concD[concD<0] = 0
#print("Variation of concentration A:", concA)
#print("Variation of concentration B:", concB)
#print("Variation of concentration C:", concC)
#print("Variation of concentration D:", concD)
# Rezultatų vaizdavimas
plt.plot(time, concA, label='Variation in A concentration')
plt.plot(time, concB, label='Variation in B concentration')
plt.plot(time, concC, label='Variation in C concentration')
plt.plot(time, concD, label='Variation in D concentration')
plt.title("Graph of changing concentrations")
plt.xlabel("t time")
plt.ylabel("Meaning of concentration variation")
plt.legend()
plt.savefig('variation_of_concentration.png')