-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtraining.py
139 lines (118 loc) · 4.56 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from os.path import join
import torch
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm_
class Trainer(object):
def __init__(self, optimizer, model, train_loader,
val_loader, save_dir, device, clip,
print_freq, ckpt_freq, patience, copy):
self.optimizer = optimizer
self.model = model
self.train_loader = train_loader
self.val_loader = val_loader
self.save_dir = save_dir
self.device = device
self.clip = clip
self.print_freq = print_freq
self.ckpt_freq = ckpt_freq
self.patience = patience
self.model_is_copy = copy
self.step = 0
self.epoch = 1
self.current_p = 0
self.best_val = 1e18
self.current_val_loss = 1e18
def validate(self):
# cal val loss
self.model.eval()
val_total_loss = 0.0
with torch.no_grad():
for srcs, targets in self.val_loader:
srcs, src_lens, tgt = srcs
srcs, src_lens, tgt, targets = srcs.to(self.device), \
src_lens.to(self.device), tgt.to(self.device), \
targets.to(self.device)
logit = self.model(srcs, src_lens, tgt)
val_loss = self.cal_loss(logit, targets)
val_total_loss += val_loss
avg_loss = val_total_loss / len(self.val_loader)
print("Epoch {}, validation average loss: {:.4f}".format(
self.epoch, avg_loss
))
self.current_val_loss = avg_loss
return avg_loss
def checkpoint(self):
save_dict = {}
name = 'ckpt-{:6f}-{}e-{}s'.format(
self.current_val_loss, self.epoch, self.step
)
save_dict['state_dict'] = self.model.state_dict()
save_dict['optimizer'] = self.optimizer.state_dict()
torch.save(save_dict, join(self.save_dir, name))
def log_info(self, losses):
total_step = len(self.train_loader)
print("Epoch {}, step:{}/{} {:.2f}%, Loss:{:.4f}".format(
self.epoch, self.step, total_step,
100 * self.step / total_step,
losses / self.print_freq
))
def check_stop(self, val_loss):
if val_loss < self.best_val:
self.best_val = val_loss
self.checkpoint()
self.current_p = 0
else:
self.current_p += 1
return self.current_p >= self.patience
def train(self):
while True:
self.model.train()
losses = 0.0
for srcs, targets in self.train_loader:
step_loss = self.train_step(srcs, targets)
losses += step_loss
if self.step % self.print_freq == 0:
#log message
self.log_info(losses)
losses = 0.0
if self.step % self.ckpt_freq == 0:
#save current model
self.checkpoint()
self.epoch += 1
self.step = 0
# get val loss and
# check whether to early stop
val_loss = self.validate()
if self.check_stop(val_loss):
print("Finished Training!")
self.checkpoint()
break
def train_step(self, srcs, targets):
self.optimizer.zero_grad()
src, src_lens, tgt, extend_src, ext_vsize = srcs
src, src_lens, tgt, extend_src, targets = src.to(self.device), \
src_lens.to(self.device), tgt.to(self.device), \
extend_src.to(self.device), targets.to(self.device)
#return logit: [batch_size, max_len, voc_size]
if self.model_is_copy:
logit = self.model(src, src_lens, tgt,
extend_src, ext_vsize).to(self.device)
else:
logit = self.model(src, src_lens, tgt).to(self.device)
loss = self.cal_loss(logit, targets)
self.step += 1
loss.backward()
clip_grad_norm_(self.model.parameters(), self.clip)
self.optimizer.step()
return loss.item()
def cal_loss(self, logits, targets, pad_idx=0):
#logits: [batch_size, max_len, voc_size]
#targets: [batch_size, max_tgt_len]
mask = (targets != pad_idx)
targets = targets.masked_select(mask)
logits = logits.masked_select(
mask.unsqueeze(2).expand_as(logits)
).contiguous().view(-1, logits.size(2))
#import pdb;pdb.set_trace()
loss = F.nll_loss(logits, targets).to(self.device)
return loss