-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRecognition.sci
60 lines (51 loc) · 2.26 KB
/
Recognition.sci
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function OutputName = Recognition(TestImage, m, A, Eigenfaces)
// Recognizing step....
//
// Description: This function compares two faces by projecting the images into facespace and
// measuring the Euclidean distance between them.
//
// Argument: TestImage - Path of the input test image
//
// m - (M*Nx1) Mean of the training
// database, which is output of 'EigenfaceCore' function.
//
// Eigenfaces - (M*Nx(P-1)) Eigen vectors of the
// covariance matrix of the training
// database, which is output of 'EigenfaceCore' function.
//
// A - (M*NxP) Matrix of centered image
// vectors, which is output of 'EigenfaceCore' function.
//
// Returns: OutputName - Name of the recognized image in the training database.
//
//Projecting centered image vectors into facespace
// All centered images are projected into facespace by multiplying in
// Eigenface basis's. Projected vector of each face will be its corresponding
// feature vector.
ProjectedImages = [];
Train_Number = size(Eigenfaces,2);
for i = 1 : Train_Number
temp = Eigenfaces'*A(:,i); // Projection of centered images into facespace
ProjectedImages = [ProjectedImages temp];
end
// Extracting the PCA features from test image
InputImage = imread(TestImage);
temp = InputImage(:,:,1);
[irow icol] = size(temp);
InImage = matrix(temp',irow*icol,1);
Difference = double(InImage)-m; // Centered test image
ProjectedTestImage = Eigenfaces'*Difference; // Test image feature vector
// Calculating Euclidean distances
// Euclidean distances between the projected test image and the projection
// of all centered training images are calculated. Test image is
// supposed to have minimum distance with its corresponding image in the
// training database.
Euc_dist = [];
for i = 1 : Train_Number
q = ProjectedImages(:,i);
temp = ( norm( ProjectedTestImage - q ) )^2;
Euc_dist = [Euc_dist temp];
end
[Euc_dist_min , Recognized_index] = min(Euc_dist);
OutputName = strcat(int2str(Recognized_index),'.jpg');
endfunction