-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
53 lines (43 loc) · 1.41 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
config_dict = {
## Logging
"save_models": False,
## Seed
"experiment_seed": 42,
## Dataset
"dataset_name": "caltech", # None, "cifar-10", "imagenet-25", ...
"dataset_path": "data/caltech-20-10-p10",
## Model
"model": "ResNet50", # ResNet50; VGG16
"batch_size": 128,
## Active learning
"n_loops": 5,
"n_epochs": 50,
"base_model_name": None, # Base model for AL loop, can be None if --base, otherwise loads specified model
"lr_init": 0.01,
# decay_early_stopping
"reduce_lr_patience": 10,
"reduce_lr_min_delta": 0.001,
"reduce_lr_min": 0.001,
# Query strategy arguments
"n_query_instances": 1000, # Number of instances to add at each iteration
"query_batch_size": 128, # Batch size for unlabeled pool iterator. Set to a low size (64) for EBAnO.
# EBAnO query strategy arguments
"layers_to_analyze": 3,
"hypercolumn_features": 10,
"hypercolumn_reduction": "sampletsvd",
"clustering": "faisskmeans",
"kmeans_niter": 100,
"k_features": (3,5),
"ebano_use_gpu": False,
"ebano_base_strategy": "entropy",
"ebano_query_limit": 1000,
"ebano_augment_limit": 1000,
"ebano_min_diff": 0.5,
"ebano_subset": None,
## Base model training
"base_lr_init": 0.001,
"base_n_epochs": 300,
"base_reduce_lr_patience": 10,
"base_reduce_lr_min_delta": 0.001,
"base_reduce_lr_min": 0.00001,
}