-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjobshop.pl
325 lines (276 loc) · 10.6 KB
/
jobshop.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This code has been tested in ECLiPSe Prolog Version 7.0
% and SWI-Prolog Version 7.6.4.
%
% with the example data set, we had cpu time in ECLiPSe:
% Comand Time
% --------------------------------------------------------------------------------------------------
% jobshop(S). 4.04s
% findall(S, jobshop(S), L), length(L, N). 173.90s
% jobshop_with_manpower(S). 6.98s
% findall(S, jobshop_with_manpower(S), L), length(L, N). 174.92s
%
% Author: Merkouris Papamichail
% email: sdi1400148@di.uoa.gr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% !!!! READ ME !!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/* ΠΑΡΑΔΟΧΕΣ ΩΣ ΠΡΟΣ ΤΗΝ ΜΟΡΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ
* Τόσο το jobshop/1, όσο και το jobshop_with_manpower/1
* προϋποθέτουν να δοθούν τα δεδομένα ως task/4, και ΟΧΙ
* task/3. Αν έχουμε δεδομένα στην μορφή task/4 και καλέσουμε
* την jobshop/1, αυτή απλώς δεν θα λάβει υπόψη της τον
* περιορισμό για τους εργαζόμανους και θα μας βγάλει σωστά
* τις λύσεις.
* Αν παρ' όλα αυτά καλέσουμε το πρόγραμμα με task/3 ως
* δεδομένα, τότε για να λειτουργήσει σωστά το πρόγραμμα
* πρέπει να αποσχολιαστεί η παρακάτω γραμμή:
*/
% task(Id, Machine, Duration, 0) :- task(Id, Machine, Duration).
/*
* Υποθέτουμε ότι το πρώτο όρισμα στο task/4, το TaskId είναι
* ΜΟΝΑΔΙΚΟ για κάθε εργασία.
*/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Example Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*
job(j1,[t11,t12]).
job(j2,[t21,t22,t23]).
job(j3,[t31]).
job(j4,[t41,t42]).
task(t11,m1,2,3). % task(t11,m1,2).
task(t12,m2,6,2). % task(t12,m2,6).
task(t21,m2,5,2). % task(t21,m2,5).
task(t22,m1,3,3). % task(t22,m1,3).
task(t23,m2,3,2). % task(t23,m2,3).
task(t31,m2,4,2). % task(t31,m2,4).
task(t41,m1,5,4). % task(t41,m1,5).
task(t42,m2,2,1). % task(t42,m2,2).
machine(m1,1).
machine(m2,2).
deadline(14).
staff(6).
*/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Utilities %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%
% List Maniplulation %
%%%%%%%%%%%%%%%%%%%%%%
% multilist/3
% Use: multilist(+Atom, +N, -MultiList)
% (Atom, N) --> MultiList = [Atom, Atom, ..., Atom], |MultiList| = N
multilist(_, 0, []) :- !.
multilist(Atom, N, [Atom| List]) :-
M is N-1, M >= 0,
multilist(Atom, M, List).
% list_of_multilist/2
% Use: list_of_multilist(+Args, -MultiLists)
% [[Atom, N] | Args] --> [[Atom, Atom, ..., Atom] | MultiLists]
list_of_multilist([], []).
list_of_multilist([[Atom, N] | Args], [MultiList | MultiLists]) :-
multilist(Atom, N, MultiList),
list_of_multilist(Args, MultiLists).
% sublist/2
% Use: sublist(?S, +L)
% true if S is a sublist of L
sublist(S, L) :-
append(_, L2, L),
append(S, _, L2).
delete_duplicates([], []).
delete_duplicates([L|List], Set) :-
member(L, List),
delete_duplicates(List, Set).
delete_duplicates([L|List], [L|Set]) :-
\+ member(L, List),
delete_duplicates(List, Set).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Queries %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
prev_task(TaskId, PrevTaskId) :-
task_job(TaskId, Job),
job(Job, TaskList),
find_prev_task(TaskList, TaskId, PrevTaskId).
find_prev_task([PrevTaskId, TaskId|_], TaskId, PrevTaskId) :- !.
find_prev_task([_, OtherTaskId | TaskList], TaskId, PrevTaskId) :-
OtherTaskId \= TaskId,
find_prev_task([OtherTaskId|TaskList], TaskId, PrevTaskId).
task_job(Task, Job) :-
job(Job, Tasks),
member(Task, Tasks).
get_all_jobs(Jobs) :-
findall(J, job(J, _), Jobs).
% get_machine_bag/1
% Use: get_machine_bag(-Machines)
% Returns a multiset of all the machines available
get_machine_bag(Machines) :-
get_all_machine_types(MachineTypes),
get_machine_bag(MachineTypes, Machines).
% get_all_machine_types/1
% Use: get_machine_bag(-MachineTypes)
get_all_machine_types(MachineTypes) :-
findall(MachineType, task(_,MachineType, _, _), MultiMachineTypes),
delete_duplicates(MultiMachineTypes, MachineTypes),!.
% get_machine_bag/2
% Use: machine_bag(+MachineTypes, -Machines)
get_machine_bag([], []) :- !.
get_machine_bag([MachineType|MachineTypes], Machines) :-
machine(MachineType, N),
multilist(MachineType, N, Machines1),
get_machine_bag(MachineTypes, Machines2),
append(Machines1, Machines2, Machines).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Queue %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create_queue/1
% Use: create_queue(-Queue)
create_queue(Queue) :-
findall([Task, Duration], task(Task, _, Duration, _), Queue_tmp),
list_of_multilist(Queue_tmp, Queue).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Schedule %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
initialize_TT(EmptyTimeTable) :-
deadline(D),
get_machine_bag(Ms),
initialize_TT(D, Ms, EmptyTimeTable).
initialize_TT(_, [], []).
initialize_TT(D, [M|Ms], [TT|TimeTables]) :-
length(L, D),
TT = execs(M, L),
initialize_TT(D, Ms, TimeTables).
generate_TT(TT) :-
create_queue(Q),
initialize_TT(TT),
generate_TT(Q, TT).
generate_TT([], _).
generate_TT([Task|Tasks], TT) :- % get the first task
Task = [T|_], task(T, MT, _, _), % get the machine of the first task
member(execs(MT, Schedule), TT), % get the correct Shcedule
sublist(Task, Schedule), % schedule the task
generate_TT(Tasks, TT).
beutify_Schedule([], _, t(nul, -1, -1), []). % base case 1
beutify_Schedule([], N, t(TaskId, StartTime, -1), [t(TaskId, StartTime, EndTime)]) :- % base case 2
TaskId \= nul,
StartTime \= -1,
EndTime is N - 1.
beutify_Schedule([S|SchedIn], N, t(nul, -1, -1), SchedOut) :- % skipping empty positions
var(S),
N1 is N + 1,
beutify_Schedule(SchedIn, N1, t(nul, -1, -1), SchedOut).
beutify_Schedule([S|SchedIn], N, t(TaskId, StartTime, -1), SchedOut) :- % finding the first empty position
var(S),
TaskId \= nul,
StartTime \= -1,
EndTime is N - 1,
N1 is N + 1,
beutify_Schedule(SchedIn, N1, t(nul, -1, -1), SchedOut1),
append([t(TaskId, StartTime, EndTime)], SchedOut1, SchedOut).
beutify_Schedule([S|SchedIn], N, t(TaskId, StartTime, -1), SchedOut) :- % a different tasks starts right next the previous one
nonvar(S), S \= TaskId,
TaskId \= nul,
StartTime \= -1,
EndTime is N - 1,
N1 is N + 1,
beutify_Schedule(SchedIn, N1, t(S, N, -1), SchedOut1),
append([t(TaskId, StartTime, EndTime)], SchedOut1, SchedOut).
beutify_Schedule([S|SchedIn], N, t(nul, -1, -1), SchedOut) :- % finding a new first non empty position
nonvar(S),
N1 is N + 1,
beutify_Schedule(SchedIn, N1, t(S, N, -1), SchedOut).
beutify_Schedule([S|SchedIn], N, t(TaskId, StartTime, -1), SchedOut) :- % skipping the tokens in the current task
nonvar(S),
S = TaskId,
TaskId \= nul,
StartTime \= -1,
N1 is N + 1,
beutify_Schedule(SchedIn, N1, t(TaskId, StartTime, -1), SchedOut).
% going from descrete time slots in real time
beutify_Schedule2([], []).
beutify_Schedule2([t(TaskId, StartTime, EndTime)|ScheduleIn], [t(TaskId, StartTime, NewEndTime)|SchedOut]) :-
NewEndTime is EndTime + 1,
beutify_Schedule2(ScheduleIn, SchedOut).
beutify_Schedule_complete(ScheduleIn, [t(TaskId, StartTime, NewEndTime)|ScheduleOut]) :-
beutify_Schedule(ScheduleIn, 0, t(nul, -1, -1), [t(TaskId, StartTime, EndTime)|Schedule_tmp]),
NewEndTime is EndTime + 1,
beutify_Schedule2(Schedule_tmp, ScheduleOut).
beutify_TT([], []).
beutify_TT([execs(MT, ScheduleIn)|TTIn], [execs(MT, ScheduleOut)|TTOut]) :-
beutify_Schedule_complete(ScheduleIn, ScheduleOut),
beutify_TT(TTIn, TTOut).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Validation %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% given a Time Table TT and a TaskId, it returns when the task
% is scheduled
scheduled(TT, TaskId, t(TaskId, TaskStartTime, TaskEndTime)) :-
task(TaskId, MT, _, _),
member(execs(MT, Schedule), TT),
member(t(TaskId, TaskStartTime, TaskEndTime), Schedule).
% checking if a task is scheduled after its previous in the job
feasible(t(TaskId, TaskStartTime, _), TT) :-
prev_task(TaskId, PrevTaskId),
scheduled(TT, PrevTaskId, t(_, _, PrevTaskEndTime)),
PrevTaskEndTime =< TaskStartTime.
feasible(t(TaskId, _, _), _) :-
\+ prev_task(TaskId, _).
validate_Schedule([], _).
validate_Schedule([Task|Schedule], TT_const) :-
feasible(Task, TT_const),
validate_Schedule(Schedule, TT_const).
validate_TT(TT) :-
validate_TT(TT, TT).
validate_TT([], _).
validate_TT([execs(_, Schedule)|TT], TT_const) :-
validate_Schedule(Schedule, TT_const),
validate_TT(TT, TT_const).
jobshop(TTOut) :-
generate_TT(TT), % generate
beutify_TT(TT, TTOut),
validate_TT(TTOut). % & test
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Tasks With Manpower %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% checks if in every "second" there are only staff(Workers), working
feasible_workers(_, _, 0).
feasible_workers(TT, TotalWorkers, Time) :-
Time > 0,
findall(
t(Id, S, E),
(
task(Id, _, _, _),
scheduled(TT, Id, t(Id, S, E)),
S =< Time, Time < E
),
Tasks
),
validate_Workers(Tasks, TotalWorkers),
NewTime is Time - 1,
feasible_workers(TT, TotalWorkers, NewTime).
feasible_workers(TT, TotalWorkers, Time) :-
Time > 0,
\+ findall(
t(Id, S, E),
(
task(Id, _, _, _),
scheduled(TT, Id, t(Id, S, E)),
S =< Time, Time < E
),
_
),
NewTime is Time - 1,
feasible_workers(TT, TotalWorkers, NewTime).
validate_Workers([], AvailableWorkers) :-
AvailableWorkers >= 0.
validate_Workers([t(Id, _, _)|Tasks], AvailableWorkers) :-
AvailableWorkers > 0,
task(Id, _, _, WorkersNeeded),
NewAvailableWorkers is AvailableWorkers - WorkersNeeded,
validate_Workers(Tasks, NewAvailableWorkers).
jobshop_with_manpower(TT) :-
staff(TotalWorkers),
deadline(Time),
jobshop(TT), % generate
feasible_workers(TT, TotalWorkers, Time). % & test