-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune.py
202 lines (180 loc) · 6.78 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
from torch.nn import Identity
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.loggers import CSVLogger, WandbLogger
import pytorch_lightning.callbacks as cb
from models.configurations import TEXT_PRETRAINED, VISION_PRETRAINED
from models.finetuner import AdaptorFinetuner, SSLEvaluator
from models.adaptor import Adaptor
from utils.model_utils import get_newest_ckpt, StreamingProgressBar
from dataset.dataset import clf_collator
from dataset.configurations import DATASET_CFG
from dataset.data_module import AdaptorDataModule
from utils.args import get_train_parser
from utils.model_utils import load_vision_model
import wandb
def main(args):
print("I'm running! ")
seed_everything(args.seed, workers=True)
if args.vision_model not in VISION_PRETRAINED.keys():
raise ValueError(
f"Vision model {args.vision_model} not available."
f"Choose from {list(VISION_PRETRAINED.keys())}"
)
if args.text_model not in TEXT_PRETRAINED.keys():
raise ValueError(
f"Text model {args.text_model} not available."
f"Choose from {list(TEXT_PRETRAINED.keys())}"
)
vision_model_config = VISION_PRETRAINED[args.vision_model]
args.vision_pretrained = vision_model_config["pretrained_weight"]
args.vision_model_type = vision_model_config["vision_model_type"]
args.vision_output_dim = vision_model_config["vision_output_dim"]
data_transform = vision_model_config["data_transform"]
args.text_pretrained = TEXT_PRETRAINED[args.text_model]
dataset_cfg = DATASET_CFG["clf"][args.dataset]
dataset_class = dataset_cfg["class"]
dataset_kwargs = dataset_cfg["kwargs"]
data_module = AdaptorDataModule(
dataset=dataset_class,
collate_fn=clf_collator,
transforms=data_transform,
data_pct=args.data_pct,
batch_size=args.batch_size,
num_workers=1,
crop_size=args.crop_size,
seed=args.seed,
**dataset_kwargs,
)
data_module.setup(stage="fit")
args.max_steps = data_module.train_steps * args.num_train_epochs
args.val_steps = data_module.val_steps
print(f"Total number of training steps: {args.max_steps}")
vision_model_config = VISION_PRETRAINED[args.vision_model]
vision_pretrained = vision_model_config["pretrained_weight"]
vision_model_type = vision_model_config["vision_model_type"]
backbone = load_vision_model(
vision_model_type=vision_model_type,
vision_pretrained=vision_pretrained,
retain_head=False,
)
adaptor_ckpt = get_newest_ckpt(
args.vision_model,
args.text_model,
wandb=args.wandb,
postfix=args.postfix,
project_name=args.pretrain_wandb_project_name,
)
adaptor = Adaptor.load_from_checkpoint(adaptor_ckpt)
model = AdaptorFinetuner(
backbone=backbone,
adaptor=adaptor,
model_name=args.vision_model,
text_model_name=args.text_model if args.dummy else None,
in_features=adaptor.projection_dim,
num_classes=dataset_cfg["num_classes"],
hidden_dim=args.hidden_dim,
dropout=args.dropout,
learning_rate=args.lr,
weight_decay=args.weight_decay,
binary=dataset_cfg["binary"],
multilabel=dataset_cfg["multilabel"],
freeze_adaptor=not args.unfreeze_adaptor,
)
if args.disable_adaptor:
model.adaptor = Identity()
model.linear_layer = SSLEvaluator(
n_input=VISION_PRETRAINED[args.vision_model]["vision_output_dim"],
n_classes=model.num_classes,
p=args.dropout,
n_hidden=args.hidden_dim,
)
callbacks = [
StreamingProgressBar(
total=data_module.train_steps, val_total=data_module.val_steps
),
]
if args.wandb:
wandb.login(key="b0236e7bef7b6a3789ca4f305406ab358812da3d")
if not args.project_name:
args.project_name = "adaptor_finetune"
logger = WandbLogger(
project=f"{args.project_name}_{args.dataset}",
save_dir=args.output_dir,
job_type="train",
name=f"{args.vision_model}_{args.text_model}_{args.dataset}_{args.data_pct}",
)
logger.watch(model, log_freq=max(100, args.log_every_n_steps))
logger.log_hyperparams(vars(args))
experiment_dir = logger.experiment.dir
callbacks += [
cb.LearningRateMonitor(logging_interval="step"),
cb.ModelCheckpoint(monitor=f"val_{model.metric_name}", mode="max"),
cb.EarlyStopping(
monitor=f"val_{model.metric_name}",
min_delta=1e-3,
patience=args.patience_epochs // args.check_val_every_n_epochs,
verbose=False,
mode="max",
),
]
else:
logger = CSVLogger(args.output_dir)
if args.cpu:
device_kwargs = {"accelerator": "cpu"}
else:
device_kwargs = {
"accelerator": "gpu",
"devices": args.n_gpus,
"num_nodes": 1,
"strategy": "ddp_find_unused_parameters_false",
}
trainer = Trainer(
max_epochs=args.num_train_epochs,
log_every_n_steps=args.log_every_n_steps,
check_val_every_n_epoch=args.check_val_every_n_epochs,
default_root_dir=args.output_dir,
callbacks=callbacks,
enable_progress_bar=False,
logger=logger,
deterministic=True,
**device_kwargs,
)
model.training_steps = args.max_steps
model.validation_steps = args.val_steps
trainer.fit(model, datamodule=data_module)
trainer.test(model, datamodule=data_module, ckpt_path="best")
if __name__ == "__main__":
parser = get_train_parser()
parser.add_argument(
"--dataset", type=str, required=True, help="Choose between 'covidx' and 'rsna'"
)
parser.add_argument("--unfreeze_adaptor", action="store_true")
parser.add_argument(
"--hidden_dim",
type=int,
default=512,
help="Hidden dimension of the classification head",
)
parser.add_argument(
"--dropout",
type=float,
default=0.1,
help="Dropout rate of the classification head",
)
parser.add_argument(
"--check_val_every_n_epochs",
type=int,
default=2,
help="Check validation every n epochs",
)
parser.add_argument("--dummy", action="store_true")
parser.add_argument("--sweep", action="store_true")
parser.add_argument("--postfix", type=str, default="")
parser.add_argument(
"--pretrain_wandb_project_name", type=str, default="adaptor pretrain"
)
parser.add_argument("--disable_adaptor", action="store_true")
args = parser.parse_args()
print("Number of GPUs available:", torch.cuda.device_count())
main(args)