-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
658 lines (510 loc) · 25.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# -*- coding: utf-8 -*-
"""Contains definitions for CompSegNet model
Ref: Mohamed Traoré, Emrah Hancer, Refik Samet, Zeynep Yıldırım, Nooshin Nemati,
“CompSegNet: An enhanced U-shaped architecture for nuclei segmentation in H&E
histopathology images,” Biomedical Signal Processing and Control, under revision,
2023.
Affil.:
* CompSeg Lab, Breast Cancer Research Group
* Ankara University, Ankara, Turkey
* Website: http://compseg.ankara.edu.tr/
* Email: compseg@ankara.edu.tr
"""
import tensorflow as tf
from keras_nlp.layers import TransformerEncoder
class IGCBlock(tf.keras.layers.Layer):
"""Implements the Improved Global Context Block.
Args:
channels (int): Number of output channels.
ratio (int): Ratio used in computing the hidden feature size (default is 4).
padding (str): Padding type for convolutional layers (default is 'same').
**kwargs: Additional keyword arguments for the parent class.
Attributes:
hf_size (int): Hidden feature size used in context transform.
hw_flatten (Lambda): Lambda layer for flattening spatial dimensions.
transpose (Lambda): Lambda layer for transposing dimensions.
add (Add): Keras Add layer for element-wise addition.
relu (ReLU): Keras ReLU activation layer.
softmax (Softmax): Keras Softmax activation layer.
ln (LayerNormalization): Keras LayerNormalization layer.
conv1 (Conv2D): Value generator for context modeling.
conv2 (Conv2D): Keys generator for context mask.
conv3 (Conv2D): Hidden features generator for context transform.
conv4 (Conv2D): Hidden features projector for context transform.
Methods:
call(x, verbose=False): Perform the forward pass for the IGCBlock.
"""
def __init__(self, channels, ratio=4, padding='same', **kwargs):
"""Initialize IGCBlock."""
super(IGCBlock, self).__init__(**kwargs)
self.hf_size = max(channels // ratio, 32)
self.hw_flatten = tf.keras.layers.Lambda(
lambda x: tf.reshape(x, shape=[tf.shape(x)[0], -1, tf.shape(x)[-1]])
)
self.transpose = tf.keras.layers.Lambda(
lambda x: tf.transpose(x, perm=[0, 2, 1])
)
self.add = tf.keras.layers.Add()
self.relu = tf.keras.layers.ReLU()
self.softmax = tf.keras.layers.Softmax(axis=1)
self.ln = tf.keras.layers.LayerNormalization()
self.conv1 = tf.keras.layers.Conv2D(
filters=channels, kernel_size=1, strides=1, padding=padding
)
self.conv2 = tf.keras.layers.Conv2D(
filters=1, kernel_size=1, strides=1, padding=padding
)
self.conv3 = tf.keras.layers.Conv2D(
filters=self.hf_size, kernel_size=1, strides=1, padding=padding
)
self.conv4 = tf.keras.layers.Conv2D(
filters=channels, kernel_size=1, strides=1, padding=padding
)
def call(self, x, verbose=False):
"""Forward pass for the IGCBlock."""
inputs = x
inputs = self.conv1(inputs)
inputs = self.hw_flatten(inputs)
inputs = self.transpose(inputs)
inputs = tf.expand_dims(inputs, axis=1)
# Generate context mask
context_mask = self.conv2(x)
context_mask = self.hw_flatten(context_mask)
context_mask = self.softmax(context_mask)
context_mask = self.transpose(context_mask)
context_mask = tf.expand_dims(context_mask, axis=-1)
# Context Modeling
context = tf.matmul(inputs, context_mask)
context = tf.reshape(context, shape=[tf.shape(x)[0], 1, 1, tf.shape(x)[-1]])
# Context transform
context_transform = self.conv3(context)
context_transform = self.ln(context_transform)
context_transform = self.relu(context_transform)
context_transform = self.conv4(context_transform)
return self.add([x, context_transform])
class CSegBlock(tf.keras.layers.Layer):
"""Implements the CompSeg (CSeg) block.
Agrs:
t (int): Width multiplier for filter expansion.
filters (int): Number of input filters.
kernel_size (int or tuple): Size of the depthwise convolution kernel.
strides (int or tuple): Strides for the depthwise convolution.
out_channels (int): Number of output filters for the projection convolution.
padding (str): Padding type for convolutional layers (default is 'same').
**kwargs: Additional keyword arguments for the parent class.
Attributes:
expansion_conv (Conv2D): Expansion convolutional layer.
expansion_bn (BatchNormalization): Batch normalization for the expansion convolution.
dwise_conv (DepthwiseConv2D): Depthwise convolutional layer.
dwise_bn (BatchNormalization): Batch normalization for the depthwise convolution.
upsample (UpSampling2D): Upsampling layer using bilinear interpolation.
projection_conv (Conv2D): Projection convolutional layer.
projection_bn (BatchNormalization): Batch normalization for the projection convolution.
shortcut_conv (Conv2D): Shortcut convolutional layer.
shortcut_bn (BatchNormalization): Batch normalization for the shortcut convolution.
add (Add): Element-wise addition layer.
relu (ReLU): ReLU activation layer.
Methods:
call(x): Perform the forward pass for the CSegBlock.
"""
def __init__(self,*, t, filters, kernel_size, strides, out_channels, padding='same', **kwargs):
"""Initialize CSegBlock."""
super(CSegBlock, self).__init__(**kwargs)
total_filters = t*filters
self.expansion_conv = tf.keras.layers.Conv2D(
filters=total_filters, kernel_size=1, strides=2, padding=padding
)
self.expansion_bn = tf.keras.layers.BatchNormalization()
self.dwise_conv = tf.keras.layers.DepthwiseConv2D(
kernel_size=kernel_size, strides=strides, padding=padding
)
self.dwise_bn = tf.keras.layers.BatchNormalization()
self.upsample = tf.keras.layers.UpSampling2D(
size=(2, 2), interpolation="bilinear"
)
self.projection_conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=1, padding=padding
)
self.projection_bn = tf.keras.layers.BatchNormalization()
self.shortcut_conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=strides, padding=padding
)
self.shortcut_bn = tf.keras.layers.BatchNormalization()
self.add = tf.keras.layers.Add()
self.relu = tf.keras.layers.ReLU()
def call(self, x):
"""Forward pass for the CSegBlock"""
# expansion
expansion = self.expansion_conv(x)
expansion = self.expansion_bn(expansion)
expansion = self.relu(expansion)
# Depthwise convolution
dwise = self.dwise_conv(expansion)
dwise = self.dwise_bn(dwise)
dwise = self.relu(dwise)
# Upsample to compensate for the downsampling in the expansion layer (stride = 2).
# This differs from the standard MBConv.
upsample = self.upsample(dwise)
# Projection
projection = self.projection_conv(upsample)
projection = self.projection_bn(projection)
# Shortcut
shortcut = self.shortcut_conv(x)
shortcut = self.shortcut_bn(shortcut)
# residual connection
merged = self.add([shortcut, projection])
return self.relu(merged)
class ECSegBlock(tf.keras.layers.Layer):
"""Implements the extended CompSeg (ECSeg) block.
Agrs:
t (int): Width multiplier for filter expansion.
filters (int): Number of input filters.
kernel_size (int or tuple): Size of the depthwise convolution kernel.
strides (int or tuple): Strides for the depthwise convolution.
out_channels (int): Number of output filters for the projection convolution.
ratio (int): Ratio for the IGCBlock instance (default is 4).
padding (str): Padding type for convolutional layers (default is 'same').
**kwargs: Additional keyword arguments for the parent class.
Attributes:
expansion_conv (Conv2D): Expansion convolutional layer.
expansion_bn (BatchNormalization): Batch normalization for the expansion convolution.
dwise_conv (DepthwiseConv2D): Depthwise convolutional layer.
dwise_bn (BatchNormalization): Batch normalization for the depthwise convolution.
upsample (UpSampling2D): Upsampling layer using bilinear interpolation.
projection_conv (Conv2D): Projection convolutional layer.
projection_bn (BatchNormalization): Batch normalization for the projection convolution.
shortcut_conv (Conv2D): Shortcut convolutional layer.
shortcut_bn (BatchNormalization): Batch normalization for the shortcut convolution.
add (Add): Element-wise addition layer.
relu (ReLU): ReLU activation layer.
gelu (Lambda): GELU activation layer.
gc_modeling (IGCBlock): IGCBlock layer instance.
Methods:
call(x): Perform the forward pass for the ECSegBlock.
"""
def __init__(self,*, t, filters, kernel_size, strides, out_channels, ratio=4, padding='same', **kwargs):
"""Initialize CSegBlock."""
super(ECSegBlock, self).__init__(**kwargs)
total_filters = t*filters
self.expansion_conv = tf.keras.layers.Conv2D(
filters=total_filters, kernel_size=1, strides=2, padding=padding
)
self.expansion_bn = tf.keras.layers.BatchNormalization()
self.dwise_conv = tf.keras.layers.DepthwiseConv2D(
kernel_size=kernel_size, strides=strides, padding=padding
)
self.dwise_bn = tf.keras.layers.BatchNormalization()
self.upsample = tf.keras.layers.UpSampling2D(
size=(2, 2), interpolation="bilinear"
)
self.projection_conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=1, padding=padding
)
self.projection_bn = tf.keras.layers.BatchNormalization()
self.shortcut_conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=strides, padding=padding
)
self.shortcut_bn = tf.keras.layers.BatchNormalization()
self.add = tf.keras.layers.Add()
self.relu = tf.keras.layers.ReLU()
self.gelu = tf.keras.layers.Lambda(lambda x: tf.keras.activations.gelu(x))
self.gc_modeling = IGCBlock(out_channels, ratio=ratio)
def call(self, x):
"""Forward pass for the ECSegBlock"""
# expansion
expansion = self.expansion_conv(x)
expansion = self.expansion_bn(expansion)
expansion = self.relu(expansion)
# depthwise convolution
dwise = self.dwise_conv(expansion)
dwise = self.dwise_bn(dwise)
dwise = self.relu(dwise)
# upsample
upsample = self.upsample(dwise)
# projection
projection = self.projection_conv(upsample)
projection = self.projection_bn(projection)
# shortcut
shortcut = self.shortcut_conv(x)
shortcut = self.shortcut_bn(shortcut)
# residual connection
rc_out = self.add([shortcut, projection])
rc_out = self.gelu(rc_out)
# global context modeling
gc_out = self.gc_modeling(rc_out)
return gc_out
class NASBlock(tf.keras.layers.Layer):
"""Implements the Noise-aware stem (NAS) block
Args:
channels (int): Number of input-output channels.
padding (str): Padding type for convolutions (default is 'same').
**kwargs: Additional keyword arguments for the parent class.
Attributes:
stem_conv (Conv2D): Stem convolutional layer.
stem_bn (BatchNormalization): Batch normalization for the stem layer.
dwise_conv (DepthwiseConv2D): Depthwise convolutional layer.
dwise_ln (LayerNormalization): Layer Normalization for the depthwise convolution.
expansion_conv (Conv2D): Expansion convolutional layer.
projection_conv (Conv2D): Projection convolutional layer.
add (Add): Element-wise addition layer.
relu (ReLU): Rectified Linear Unit activation layer.
gelu (Lambda): GELU activation layer.
Methods:
call(x, verbose=False): Perform the forward pass for the NASBlock.
"""
def __init__(self, channels, padding='same', **kwargs):
"""Initialize NASBlock."""
super(NASBlock, self).__init__(**kwargs)
self.stem_conv = tf.keras.layers.Conv2D(
filters=channels, kernel_size=3, strides=1, padding=padding
)
self.stem_bn = tf.keras.layers.BatchNormalization()
self.dwise_conv = tf.keras.layers.DepthwiseConv2D(
kernel_size=7, strides=1, padding=padding
)
self.dwise_ln = tf.keras.layers.LayerNormalization()
self.expansion_conv = tf.keras.layers.Conv2D(
filters=2*channels, kernel_size=1, strides=1, padding=padding
)
self.projection_conv = tf.keras.layers.Conv2D(
filters=channels, kernel_size=1, strides=1, padding=padding
)
self.add = tf.keras.layers.Add()
self.relu = tf.keras.layers.ReLU()
self.gelu = tf.keras.layers.Lambda(lambda x: tf.keras.activations.gelu(x))
def call(self, x, verbose=False):
"""Forward pass for the NASBlock"""
# stem
stem = self.stem_conv(x)
stem = self.stem_bn(stem)
stem = self.relu(stem)
# depthwise convolution
dwise = self.dwise_conv(stem)
dwise = self.dwise_ln(dwise)
# expansion
expansion = self.expansion_conv(dwise)
expansion = self.gelu(expansion)
# projection
projection = self.projection_conv(expansion)
return self.add([stem, projection])
class RBTBlock(tf.keras.layers.Layer):
"""Implements the Residual Bottleneck Transformer (RBT) Block.
Args:
t (int): Width multiplier for filter expansion.
filters (int): Number of input channels.
out_channels (int): Number of output channels.
num_trans_encoder (int): Number of Transformer encoder layers (default is 6).
num_heads (int): Number of attention heads in the Transformer encoder (default is 8).
d_model (int): Dimension of the MLP hidden layer in the Transformer encoder (default is 1024).
dropout (float): Dropout rate in the Transformer encoder (default is 0.10).
padding (str): Padding type for convolutions (default is 'same').
**kwargs: Additional keyword arguments for the parent class.
Attributes:
dwise1_conv (DepthwiseConv2D): First depthwise convolution layer.
dwise1_bn (BatchNormalization): Batch normalization for the first depthwise convolution.
expansion_conv (Conv2D): Expansion convolution layer.
expansion_bn (BatchNormalization): Batch normalization for the expansion convolution.
reshape_in (Lambda): Reshape layer for transformer input.
trans (list): List of TransformerEncoder layers.
reshape_out (Lambda): Reshape layer for transformer output.
projection_conv (Conv2D): Projection convolution layer.
projection_bn (BatchNormalization): Batch normalization for the projection convolution.
dwise2_conv (DepthwiseConv2D): Second depthwise convolution layer.
dwise2_bn (BatchNormalization): Batch normalization for the second depthwise convolution.
shortcut_conv (Conv2D): Shortcut convolution layer.
shortcut_bn (BatchNormalization): Batch normalization for the shortcut convolution.
relu (ReLU): ReLU activation layer.
add (Add): Element-wise addition layer.
Methods:
call(x, verbose=False): Forward pass for the RBTBlock.
"""
def __init__(self, *, t, filters, out_channels, num_trans_encoder=6, num_heads=8, d_model=1024, dropout=0.10, padding='same', **kwargs):
"""Initialize RBTBlock."""
super(RBTBlock, self).__init__(**kwargs)
total_filters = t*filters
self.dwise1_conv = tf.keras.layers.DepthwiseConv2D(
kernel_size=3, strides=1, padding=padding
)
self.dwise1_bn = tf.keras.layers.BatchNormalization()
self.expansion_conv = tf.keras.layers.Conv2D(
filters=total_filters, kernel_size=1, strides=1, padding=padding
)
self.expansion_bn = tf.keras.layers.BatchNormalization()
self.reshape_in = tf.keras.layers.Lambda(
lambda x: tf.reshape(x, shape=[tf.shape(x)[0], tf.shape(x)[-1], tf.shape(x)[1]*tf.shape(x)[2]])
)
self.reshape_out = tf.keras.layers.Lambda(
lambda x: tf.reshape(x, shape=[tf.shape(x)[0], 32, 32, tf.shape(x)[1]])
)
self.trans = [TransformerEncoder(intermediate_dim=d_model, num_heads=num_heads, dropout=dropout)
for _ in range(num_trans_encoder)]
self.projection_conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=1, padding='same'
)
self.projection_bn = tf.keras.layers.BatchNormalization()
self.dwise2_conv = tf.keras.layers.DepthwiseConv2D(
kernel_size=3, strides=2, padding=padding
)
self.dwise2_bn = tf.keras.layers.BatchNormalization()
self.shortcut_conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=2, padding='same'
)
self.shortcut_bn = tf.keras.layers.BatchNormalization()
self.relu = tf.keras.layers.ReLU()
self.add = tf.keras.layers.Add()
def call(self, x, verbose=False):
"""Forward pass for the RBTBlock."""
# first depthwise convolution
dwise1 = self.dwise1_conv(x)
dwise1 = self.dwise1_bn(dwise1)
dwise1 = self.relu(dwise1)
# expansion
expansion = self.expansion_conv(dwise1)
expansion = self.expansion_bn(expansion)
# Reshape for transformer input
reshaped = self.reshape_in(expansion)
# transformer encoding
for layer in self.trans:
reshaped = layer(reshaped)
# Reshape back
reshaped = self.reshape_out(reshaped)
# projection
projection = self.projection_conv(reshaped)
projection = self.projection_bn(projection)
projection = self.relu(projection)
# second depthwise convolution
dwise2 = self.dwise2_conv(projection)
dwise2 = self.dwise2_bn(dwise2)
# residual connection
shortcut = self.shortcut_conv(x)
shortcut = self.shortcut_bn(shortcut)
shortcut = self.add([shortcut, dwise2])
return self.relu(shortcut)
class UpAndConcat(tf.keras.layers.Layer):
"""Implements Upsampling and Concatenation.
Args:
**kwargs: Additional keyword arguments for the parent class.
Attributes:
upsample (UpSampling2D): Upsampling layer.
cat (Concatenate): Concatenation layer.
Methods:
call(inputs, verbose=False): Forward pass for the UpAndConcat layer.
"""
def __init__(self, **kwargs):
"""Initialize the UpAndConcat layer."""
super(UpAndConcat, self).__init__(**kwargs)
self.upsample = tf.keras.layers.UpSampling2D(size=(2, 2))
self.cat = tf.keras.layers.Concatenate()
def call(self, inputs, verbose=False):
"""Forward pass the UpAndConcat layer."""
x, x_skip = inputs
upsample = self.upsample(x)
merged = self.cat([upsample, x_skip])
return merged
class SegmentationHead(tf.keras.layers.Layer):
"""Implements the Segmentation Head Layer.
Args:
num_classes (int): Number of classes in the segmentation task.
**kwargs: Additional keyword arguments for the parent class.
Attributes:
num_classes (int): Number of classes in the segmentation task.
conv_out (Conv2D): Convolutional layer for generating segmentation mask.
activation (Activation): Activation layer (sigmoid for binary, softmax for multi-class).
Methods:
call(x): Forward pass for the SegmentationHead layer.
"""
def __init__(self, num_classes, **kwargs):
"""Initialize SegmentationHead Layer."""
super(SegmentationHead, self).__init__(**kwargs)
self.num_classes = num_classes
self.conv_out = tf.keras.layers.Conv2D(
filters=num_classes, kernel_size=1, strides=1, padding="same"
)
if num_classes == 1:
self.activation = tf.keras.layers.Activation("sigmoid")
else:
self.activation = tf.keras.layers.Activation("softmax")
def call(self, x):
"""Forward pass the SegmentationHead layer."""
x = self.conv_out(x)
x = self.activation(x)
return x
class CompSegNet(tf.keras.Model):
"""Comprehensive Segmentation Network.
Args:
num_classes (int): Number of classes in the segmentation task (default is 1).
**kwargs: Additional keyword arguments for the parent class.
Attributes:
out_channels (list): List of output channels for each stage of the network.
stem (NASBlock): Stem block of the network.
encoder_block1, encoder_block2, encoder_block3 (Sequential): Encoder blocks for different stages.
bottleneck_block (RBTBlock): Bottleneck block in the middle of the network.
decoder_block1, decoder_block2, decoder_block3, decoder_block4 (ECSegBlock): Decoder blocks for different stages.
up_and_concat (UpAndConcat): Upsampling and concatenation layer for decoder stages.
seg (SegmentationHead): Segmentation head for mask generation.
Methods:
call(x, verbose=False): Forward pass for the CompSegNet.
build_graph(input_shape): Build the model graph with specified input shape.
"""
def __init__(self, num_classes=1, **kwargs):
super(CompSegNet, self).__init__(**kwargs)
self.out_channels = [64, 128, 256, 512, 1024]
self.stem = NASBlock(channels=self.out_channels[0])
self.encoder_block1 = tf.keras.Sequential([
CSegBlock(t=4, filters=self.out_channels[0], kernel_size=7, strides=1, out_channels=self.out_channels[1]),
ECSegBlock(t=4, filters=self.out_channels[1], kernel_size=7, strides=2, out_channels=self.out_channels[1])
])
self.encoder_block2 = tf.keras.Sequential([
CSegBlock(t=4, filters=self.out_channels[1], kernel_size=7, strides=1, out_channels=self.out_channels[2]),
ECSegBlock(t=4, filters=self.out_channels[2], kernel_size=7, strides=2, out_channels=self.out_channels[2])
])
self.encoder_block3 = tf.keras.Sequential([
CSegBlock(t=4, filters=self.out_channels[2], kernel_size=7, strides=1, out_channels=self.out_channels[3]),
ECSegBlock(t=4, filters=self.out_channels[3], kernel_size=7, strides=2, out_channels=self.out_channels[3])
])
self.bottleneck_block = RBTBlock(t=4, filters=self.out_channels[3], out_channels=self.out_channels[4])
self.decoder_block1 = ECSegBlock(
t=4, filters=self.out_channels[4], kernel_size=7, strides=1, out_channels=self.out_channels[3]
)
self.decoder_block2 = ECSegBlock(
t=4, filters=self.out_channels[3], kernel_size=7, strides=1, out_channels=self.out_channels[2]
)
self.decoder_block3 = ECSegBlock(
t=4, filters=self.out_channels[2], kernel_size=7, strides=1, out_channels=self.out_channels[1]
)
self.decoder_block4 = ECSegBlock(
t=4, filters=self.out_channels[1], kernel_size=7, strides=1, out_channels=self.out_channels[0]
)
self.up_and_concat = UpAndConcat()
self.seg = SegmentationHead(num_classes=1)
def call(self, x, verbose=False):
"""Forward pass for the CompSegNet model"""
# stem
stem = self.stem(x)
# encoder path
enc1 = self.encoder_block1(stem)
enc2 = self.encoder_block2(enc1)
enc3 = self.encoder_block3(enc2)
# bottleneck
bneck = self.bottleneck_block(enc3)
# decoder path
uc1 = self.up_and_concat([bneck, enc3])
dec1 = self.decoder_block1(uc1)
uc2 = self.up_and_concat([dec1, enc2])
dec2 = self.decoder_block2(uc2)
uc3 = self.up_and_concat([dec2, enc1])
dec3 = self.decoder_block3(uc3)
uc4 = self.up_and_concat([dec3, stem])
dec4 = self.decoder_block4(uc4)
# segmentation mask generation
seg_mask = self.seg(dec4)
return seg_mask
def build_graph(self, input_shape):
"""Build the CompSegNet model graph."""
x = tf.keras.Input(shape=input_shape)
return tf.keras.Model(inputs=[x], outputs=self.call(x))
if __name__ == "__main__":
input_shape = (256, 256, 3)
model = CompSegNet()
model = model.build_graph(input_shape)
model.summary()