-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
195 lines (163 loc) · 5.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import hydra
from omegaconf import DictConfig, OmegaConf
import gymnasium as gym
import torch
import wandb
from pathlib import Path
from loguru import logger
import numpy as np
import random
import os
from dotenv import load_dotenv
from agents.factory import AgentFactory
from utils.logger import setup_logger
from utils.metrics.factory import MetricsFactory
from utils.save_manager import SaveManager
load_dotenv()
os.environ["WANDB_API_KEY"] = os.getenv("WANDB_API_KEY")
wandb.login(key=os.getenv("WANDB_API_KEY"))
@hydra.main(version_base=None, config_path="config", config_name="config")
def main(cfg: DictConfig) -> None:
# Setup device
if torch.cuda.is_available():
device = "cuda"
torch.backends.cudnn.benchmark = True
else:
device = "cpu"
cfg.device = device
# Setup logging
log_dir = Path(hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
setup_logger(log_dir)
logger.info(f"Using device: {device}")
# Create environment
env = gym.make(cfg.env.name)
logger.info(f"Created environment: {cfg.env.name}")
# Set random seed
torch.manual_seed(cfg.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
env.reset(seed=cfg.seed)
logger.info(f"Set random seed to {cfg.seed}")
# Update config with environment info
OmegaConf.set_struct(cfg, False) # Allow config modification
cfg.agent.state_dim = env.observation_space.shape[0]
cfg.agent.action_dim = env.action_space.shape[0]
cfg.agent.action_high = float(env.action_space.high[0])
cfg.agent.action_low = float(env.action_space.low[0])
cfg.agent.num_timesteps = env.spec.max_episode_steps
# Log agent configuration
logger.info("\nAgent configuration:")
logger.info(OmegaConf.to_yaml(cfg.agent))
# Setup metrics
if cfg.tensorboard.enabled:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=str(log_dir))
else:
writer = None
metrics = MetricsFactory.create(
env_id=cfg.env.name, writer=writer, use_wandb=cfg.wandb.mode != "disabled"
)
logger.info(f"Created metrics for environment: {cfg.env.name}")
# Initialize wandb if enabled
if cfg.wandb.mode != "disabled":
wandb.init(
project=cfg.wandb.project,
name=cfg.wandb.name,
entity=cfg.wandb.entity,
config=dict(cfg),
mode=cfg.wandb.mode,
dir=str(log_dir),
)
logger.info("Initialized W&B logging")
# Create agent
cfg.agent.device = device
agent = AgentFactory.create(cfg.agent)
logger.info(f"Created {cfg.agent.name} agent")
# Setup save manager
save_manager = SaveManager(
save_dir=log_dir,
metrics_freq=cfg.save.metrics_freq,
model_freq=cfg.save.model_freq,
)
# Training loop
total_steps = 0
best_reward = float("-inf")
logger.info("Starting training...")
for episode in range(cfg.env.max_episodes):
state, _ = env.reset()
episode_reward = 0
episode_steps = 0
done = False
total_critic_loss = 0
total_actor_loss = 0
while not done:
episode_steps += 1
total_steps += 1
if total_steps < cfg.env.max_steps:
action = env.action_space.sample()
else:
action = agent.get_exploration_action(state)
next_state, reward, done, truncated, info = env.step(action)
episode_reward += reward
agent.store_experience(state, action, reward, next_state, done)
if (
len(agent.replay_buffer) > cfg.agent.batch_size
and total_steps > cfg.env.max_steps
):
critic_loss, actor_loss = agent.train()
total_critic_loss += critic_loss
total_actor_loss += actor_loss
state = next_state
if truncated:
done = True
# Update metrics
metrics.push_back(
reward=episode_reward,
critic_loss=total_critic_loss,
actor_loss=total_actor_loss,
length=episode_steps,
action=action,
state=state,
info=info,
)
# Update best reward and save best model
if episode_reward > best_reward:
best_reward = episode_reward
logger.info(f"New best reward: {best_reward:.2f}")
save_manager.save_model(
agent=agent,
episode=episode,
reward=episode_reward,
is_best=True,
)
# Periodic saves
if save_manager.should_save_metrics(episode):
save_manager.save_metrics(metrics, episode)
if save_manager.should_save_model(episode):
save_manager.save_model(
agent=agent,
episode=episode,
reward=episode_reward,
)
logger.info(
f"Episode {episode}: Reward = {episode_reward:.2f}, Steps = {episode_steps}, Best = {best_reward:.2f}"
)
# Save final metrics and model
save_manager.save_metrics(metrics, episode)
save_manager.save_model(
agent=agent,
episode=episode,
reward=episode_reward,
is_final=True,
)
logger.info("\nFinal metrics summary:")
metrics.print_summary()
if cfg.wandb.mode != "disabled":
wandb.finish()
if writer:
writer.close()
logger.info("Training completed!")
if __name__ == "__main__":
main()