-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalysis.tex
63 lines (53 loc) · 2.01 KB
/
analysis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
\chapter{Analysis}
\section{Bump functions}
\label{sec:bump_functions}
\begin{thm}
\label{thm:bump_function}
For any two real numbers $0 < r < R$ there exists a smooth
function $\phi\colon \set R^n \to \set R$ with
\begin{align*}
\forall p \in \set R^n: \phi(p) & \ge 0, &
\forall p \in \set R^n: \norm p \leq r \implies \phi(p) & = 1, &
\forall p \in \set R^n: \norm p \geq R \implies \phi(p) & = 0.
\end{align*}
\end{thm}
A function as in the theorem is called a \emph{bump function}.
\section{Hadamard's lemma}
A subset $U$ of $n$-dimensional Euclidean space $\set R^n$ is \emph{star-shaped with
respect to a point $p \in U$} if
\[
\forall x \in U \forall 0 \leq t \leq 1 :
(1 - t) \, p + t \, x \in U.
\]
Any neighborhood of a point $p \in \set R^n$ contains an open neighborhood
star-shaped with respect to the point $p$ as the standard $\epsilon$-neighborhoods
are star-shaped with respect to their center (in fact, with respect to any point
of their interior).
\begin{thm}
\label{thm:hadamard}
Let $\phi$ be a smooth function defined on an open subset $U$ of $n$-dimensional
Euclidean space $\set R^n$ that is star-shaped with respect to a point $a \in U$.
Then there exist smooth functions $g_1$, \dots, $g_n$ on $U$ such that
\[
\forall x \in U: \phi(x) = \phi(a) + \sum_{i = 1}^n (x_i - a_i) \, g_i(x).
\]
\end{thm}
\section{Ordinary differential equations}
Let $p_0 \in \set R^n$ be a point in Euclidean space and
$G \in \mathfrak U^0(p_0, \set R^n)$ an open subset. Let $f\colon G \to \set R^n$
be a smooth function.
\begin{thm}[Existence theorem for smooth local flows]
\label{thm:diff_flow}
There exists a neighborhood $U \in \mathfrak U^0(p_0, G)$, an
$\epsilon \in \set R_+$ and a smooth function $\Psi\colon
U_\epsilon(0) \times U \to G$ such that the curves
\[
\Psi^p\colon U_\epsilon(0) \to G, t \mapsto \Psi(t, p)
\]
solve the initial value problem
\begin{align*}
(\Psi^p)' & = f \circ \Psi^p, &
\Psi^p(0) & = 0
\end{align*}
for each $p \in U$.
\end{thm}